Paysics 523, QUANTUM FIELD THEORY II
Homework 1
Due Wednesday, 14" January 2004

JACOB LEWIS BOURJAILY
Bremsstrahlung

a) We showed that in the low energy limit, the amplitude for Bremsstrahlung,

= el o) (2 - 2 ) (1)

can be written in terms of the amplitude for the process without bremsstrahlung which given in
terms of the relativistically corrected amplitude M, (p’, p),

= iu(p ) M, (p', p)u(p).

We are to verify that (1.1) does indeed vanish when €, = k,. This can be easily seen by direct
calculation.

. , A
IM = eu(p )Mo(p 7p)u(p) <p/ -k p- k) k‘,“

= eu(p') Mo (', p)u(p) (]:7 ,k;; - l:.k;f) ’
= eu(p ) M,(p', p)u(p) (1 - 1),

L iMPE, = 0. (1.2)
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omep €deL der€an

b) While in the soft photon limit this amplitude is consistent with current conservation, we will
show that it fails in complete generality. To see this, let us consider the full amplitude for the
two diagrams,

iM = eu(p') {Mo(p’,pk) poktm Pkt m

_PTRET g 4k . (1.3
s LM ) ). (13)
Now, recalling our work with the Dirac equation (and its conjugate) we see that,

@+ m)y u(p) = 2p'u(p), and a(p )Y@ +m) =a(p")2p™.

Combining this result with simple kinematics for the case where ¢, = k,, we have
/
iM = eu(p) {kuWMo(p’ +k,p) = Mo(p',p - k)wku} u(p),
— cu(p) {2p’ kK
2p' - k
= etu(p') Mo(p' + k,p) — Mo(p',p — k)] u(p),
Now, this result cannot be vanishing for an arbitrary photon energy k. It is certainly the case

that M, (p’ + k,p) = M,(p',p — k) to the order O(1/k) but certainly not in general. We will
have to add an additional diagram to see true current conservation.

Ve (k) +"e,

Mo(p' + k,p) — Mo(p',p — k)W} u(p),
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¢) We can improve our estimate of the amplitude to emit a photon by Bremsstrahlung by adding a
third diagram in which the photon is emitted from the ‘gut’ of the reaction with some amplitude
iMs = etu(p’)e;, S*u(p). Adding this diagram, we arrive have

2p" A1k

, , 2 M 1%
sk Mt + ) - M- R —s“}u<p>. (1.4

2p - k

— (et {

m

Therefore, we see that gauge invariance which demands that k, M .

2p™ + 1K
2p' - k
= eu(p")[Mo(p' + k,p) — Mo(p',p — k) — k.S"Ju(p),
Therefore we see at once that gauge invariance implies that
ke S* = Mo(p' + k,p) — Mo (¥, p — k). (1.5)
d) Let us expand in derivatives of M,’s on the right. Doing this, we see that

. = 0 implies that

ke Migea = 0= eu(p')k,, {

tota.

2 M 14
Mo+ k,p) — Mo(p',p — k)% - S“} u(p),

0 0
7Mo(p/7p)k# =+ 7,/\/10(])/,]))]{3“. (16)

no_
k“S B 8p’# apﬂ

This implies that

GH — <8i’ + 8?) M, (p',p) + divergenceless term.
w "

Now, At low energy, all divergenceless terms will go to zero and so our approximation of

0 0
SH = + ) M, ', , 1.7
( S o) Mol ) (L7)

is good to O(1).
Returning to the process of soft Bremsstrahlung, we see that the total amplitude to order
O(1) can be written as

thotal = eﬂ(p/) {

1 (B) Mo (p', p)u(p). (1.8)
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1. Feynman Parametrization
We are to prove Feynman’s Formula,

1 (n—1)!
- (n) E
Ay A, /dxl +dznd ( e > (21 A1 + -+ + 2, A (1.1)

We will prove this result by induction. First, we will show that

1
e :/O da1dz26® (1 + 25 — 1)—[301141 +1x2A2]2' (1.2)
This integral can be simplified by using the dirac J-function so that,
/1dz1dz25(2)(z1 + zo — 1); = /ldx1 ! (1.3)
0 [x141 + 2242)? 0 [x1A1 + (1 — z1)Ag]2" ’

We will solve this integral by making the substitution v = (z14; 4 (1—x1)A2) so that du = (A; — Ag)dx;.
Substituting u in the integral above and noting the change in the limits of integration we see immediately

that
1 /Al du 11 (_1)
A1A2 o Ao (Al — AQ) u2 o (Al — Ag) u

A1

1 11
— ), 14
a AL A <A2 A1> (14)

1
1 1
o dzidass® —1 = : 1.5
/0 T104T2 (:U1 + X9 )[331141 +I2A2]2 A, A, ( )
omep é5er Setfaun
Before we complete our proof, let us prove the lemma,
1 nxy

/ d.’l?ld.’lﬁg(s( )(xl + Lo — 1) (16)

A A 0 [Z'aAl —+ IL’QAQ]”JFI ’

This lemma will be proved by induction. We have shown that for n = 1 equation (1.6) holds. Now, let
us suppose that (1.6) is true for some exponent m > 1. We must show that this implies that (1.6) is
satisfied for m + 1. So our induction hypothesis is given by

1 1 mx™ 1
= | dridzss™@ —1 2 : 1.7
AlAg“ /0 142 (331 + X2 )[l‘aAl + $2A2]m+1 ( )
Let us differentiate both side of equation (1.7) with respect to As. This becomes
1 m(m + 1)ah ™y
—m———— = — [ dr1dzosdP (x4 20 — 1 2 ,
A1A72n+1 / 1 2 ( 1 2 )[331141 + ngQ]m+2
(1.8)
(m+1)af’
dydao0? . 1.9
A Am+1 / XT1aT2 (331 + 22 — )[£C1A1 i $2A2]m+2 ( )

¢ % ~
omep €del der€an

Now we are ready to complete the entire proof. Because we have shown that Feynman’s formula is
true for T 45 A , we may prove by induction to i L - Let us assume therefore that Feynman’s formula
is valid for some n = m > 2. We must show that it is valid for m + 1.
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We will begin this proof by direct calculation. For this derivation, we will use the following notational
conveniences:

U = (1141 + -+ 2,4n), w=(1—umt1)z;, du; = (1= zpmyp1)de; for i € [1,m].

Note that wu,,41 is an ordinary integration variable and is not set by the above. By our induction
hypothesis, we have that

1 (m—1)!
5(m) —
A A /dml md (Zm 1) (2141 + - F T Ap]™

We also note the property of the Dirac d-functional that §(f(z)/a) = ad(f(x)). Now, let us make the
following calculation

1 1 1
ArAppr Apgr Ave Ay

1 ! “ (m —1)!
= dxry - dx,0 x; — 1 ,
A7n+1 /0 ! (; > [xlAl + -4 xmAm]m

1 m
1 1

dzy - - dxmd E zi—1](m—-1)—— ,
0 (i_l ) ) ?" Ania

1 m 1 —1

m(l — Upgr)™

= dxq - -dr,d z; — 1 m—l!/dum ,
/0 ' (Z ) ( ) o A = U )+ g1 A

1—Um41 m! 1 (1 — U )m71
= duy -+ dumd zi—1| —m8— | dunm, mtl ;
/ (Z ) 1 —Zpq1)™ /0 1 1Ay + -+ umAp + U1 A |7

m

1— Um 41 W m'
o v -1 :
/ dum+1 / du1 dum5 <Z (1 — Um+1) ) (1 — um+1)[u1A1 NI Um+1Am+1]m+1’

=1

1— —Um+1 m+1 m‘
= | dumii / dup - du Uu; - .
A m—+ 0 m Z T ulAl N U77;+1Am+1]m+1

We note that because of the §-functional within the integral (and because u,,41 is always positive),
when the domain of the interior integral is extended to 1 the integral will not pick up any additional
contribution. So we may put the integral above into a more symmetric form,

m—+1 '
m!
E . 1.1
A A /du1 dum+16< i ) [u1 Ay + -+ + U1 AL (1.10)

Therefore, by induction on m we see that for all values n > 2,

1 (n—1)!
- - (n) E —
Ay -+ A, /dwl dznd ( i 1) [T1 A1 + - + 2, A" (1.11)

¢ %y ~
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2. Loop Integrals

a) We are to demonstrate that

d*¢ 1 _i(-nm 1 1 _—
/(277)4 [2 =A™~ (4m)2 (m—1)(m — 2) Am—2 f > 2

To compute this integral, we will first note that the two poles, at £ = +v/A, are covered
by the same contour in the complex ¢° plane when the contour is analytically extended to the
imaginary axis. Therefore, without loss of generality, we may make the substitution £ = i/p.
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Doing this, we may compute directly. Note the substitution u = ¢% + A in the fifth line. Also
notice that the derivation is only valid for m > 2 because the integral will diverge for m < 2.

d*e 1
/ G AT~ G / e A ﬁ? Al

_z( 1ym

B <27r> / ‘WEW +A]m’
1>

= /dQ4/ d€E€2+A

B < " @,

= o “E%w ’

2i(=1)™ [* du 03
C o (m? /A %17”’
i=nm (=
(&n)? /A g
i(—1)™ 1 1 >‘°C
(4m)? m—1um1  (m—=2)um=2)|\’
_i(=1)
(4

nm _ 1 1
4m)2 \(m — 2Am2 (m—1)Am=2 )"’

d*e 1 —-1)m 1 1
'.'/(%)4 [z — A (477)2 (m — 1)(m — 2) Am—2 for m > 2. (2.1)

7

7

omep €del detfou
b) We are to demonstrate that

d*¢ 2 i(—1ymt 9 .
/(27r)4 [2—AJ" ~  (4m)2 (m—1)(m—2)(m —3) Am—3 for m > 3.

To prove this equality we will proceed similarly to part (a) above. Like before, we note that
the two residues, at ¢ = +v/A, are covered by the same branch cut in the complex plane when
the contour integral is analytically continued to the imaginary axis. Therefore, we will make
the substitution ¢ = ify. When computing the integral explicitly below, note the substitution
u =%+ A. Also, notice that for m < 3 the integral will diverge. We will proceed directly.

e e A S}
172 _ ANlm 1| dle 2 Am’
(2m)* [ — A (2m) [—0F — A
T P )
— (271_)4 /dQ4/ dlg [sz—‘rA]m’
nm-

_2i(— / du 03
T (4m? Ja 2gum

iy /°° itk

s M
- Z(@)rij 1 (_(ml—s) =k (m1—2) i (ml—l) uil> N
:Z(<417)r>2 Ai3<<m1—3>‘<m2—2>+<m1-1>>’
-f <§w§ & —EQAW - (?4173? (m - 1><m2— 2)(m —3) s form >3 22)

omep €deL Setfou
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c) Let us prove the identity

/ éif <w2 fQAP G —gQAAP) = G <AAA> |

To prove this identity we will differentiate both sides with respect to A. Doing this, the right
hand side trivially becomes (noting the definition of Ay),

Differentiating the left hand side and using equation (2.

we see that,

2)

aaA{/ <§;§4([ﬁi]f[ﬁ—pmw)}_g/ (% <[€2 EQM = s ]4)’
:3< 3 ( A1A>
:<' <

i
AAA)

i
(47r <AAA
i —zA?
C(4m)2 ApAT

Therefore the derivatives of each sides of the desired identity with respect to A are equal. We
note that, by direct calculation, the constant of integration is zero.

S (tar - ag) = w3 z4

‘. % ~
omep €del der€an

3. The Volume Element in D-Dimensions

a) We note that evaluating the trivial Gaussian integral yields

I= /OO do e™™ = /7. (3.1)

—00

b) Let us compute the general Gaussian integral,
o0
= / day -+ da,, e~ @t
— 00

We note that a general procedure for computing such Gaussian integrals is to convert it into an
integral over spherical coordinates. Let us compute I™ directly this way. When needed, we will
define the substitution variable u = 72

/dQn 1/ dr r" e,
/dQn 1/ du ey,
2r
1 _ _
:/dﬂn,lf/ du um=2/2e—u
2 O ’
1

=-TI'(n/2)Q,_1,

c) Using our result above we see that 7(P/2) = Qp_11/2I'(D/2). Therefore it is clear that
271_D/2
I(D/2)

d) Therefore by part (c¢) we see immediately that

QD,1 = (32)

3
Ql = 27‘(’7 QQ = 47‘(’, Q3 = 27‘[‘2, Q4 = 5772. (33)
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4. The Electron Vertex Function
We are to completely simplify the numerator of the integrand of the electron vertex function’s first
order correction written as

N =a(p) [ K" F +mPy" = 2m(k + K] u(p). (4.1)
In part to accomplish this task we will make the substitution
L=k+yq— zp.

During the following exercise in algebra, we will often make use of the Dirac equation which can be

written as
a(p )y =u@)m,  pulp) =mu(p),  alp’) fulp) =0, (4.2)

and we will frequently imply the use of the Dirac equation to set y — m,y’ — m, or¢ — 0 by implying
contraction with a spinor outside the square brackets. This of course can only be done when the specific
momentum 4-vector is appropriately located (without v#’s between it and the needed spinor(s)). Also,
we will make use of the facts derived in class that when this integral is evaluated, all terms linear in £
will give no contribution and rotational symmetry allows us to set ¢/#¢F — % gzt

Let us begin our calculation by direct substitution (making use of the stated identity to throw out
terms linear in ¢¥).

N =alp) [ -y — ) " d—zydr* B+z(1 — y) gy d+22 gy B+mPyt = 2m(1 = 2y)q — dmazp | u(p).

We will evaluate this in parts.

. 2 1 ., 1
1. I =2 = P = S gt = Py = =S
ii. " d = 24q — A" = —¢*7".
~~
—0
iii. IV B =gy"m = m P yH — m gyt = mEyH — 2mpt + myP = 2m3yH — 2mpH.
iv. YA =204 " Bd = —29"p-q+myt f = —"2p- g+ mAyt P —mPy,
—0

= —12p - q + 2mp't — 2m3y*.

Notice, however, that

2-q=p-q+tp-ag=p-q+p -g-=p"+p -p—p p-p’ - =m"-m?-¢ =—¢"

Therefore,
P A =g+ mp't = 2mPAt.

v. PP =mpyt = 2mpt —my.

Combining all of these results, we may write the numerator as
o

1
N =) |4 <242 Ly )+ 2(1 - 9@ — 2mPyz — 2mP=(1 —y) — PP + m) ,

+ 2myzp” 4 2mz(1 — y)p™* + 2m2%p* — 2m(1 — 2y)g" — 4mzp™ | u(p).

3

It is important to note that we do not imply that ¢#¢¥ = ig””ZQ or that £¥ = 0 but rather that these are symmetries
of the integrand.

2Here and later in the derivation we make use of the identity p2 = p2. This is seen by simple v algebra:
PP = puy" i = 207 — puVpy = 2p°—pP. So 2 = 2p® =p® = p°.
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Let us simplify the parts &/ and % separately. To do this, we will make repeated use of the fact that
2z + 1y + z = 1 by the Dirac §-functional of these Feynman parameters. Let us begin with part .

1
o —5«?2 +@ (1l —y)+2(1—y)) +m” (2yz —2z(1 —y) — 2> + 1),

1
—ifz + @ (1—2—2)(1—2)+2(1 —y)) +m? (—2yz — 22 + 2yz + 1),

1
= —§€2 + (1 —2)(1 —y) +m*(1 — 22 — 22).

Now let us simplify part 9. This process will not seem beautiful or elegant, but in the words of
Pascal, “T apologize for this [derivation’s] length for I did not have time to make it short.”

B = 2myzp" + 2mz(1 — y)p™ + 2mz2*p" — 2m(1 — 2y)g" — dmzp”,
=2m (yzp" + 2p™ — zyp™ + 2°p" — ¢" + 2yq* — 2zp")
=2m (2(z — )p/" — 2p" + 2p™ — 2p™ + zap™ + 2°p* — ¢ + 2yq" + y2p")
=2m (2(z = )(p" + ") + 2¢" + zap™ — ¢" + 2yq" + yzp"),
=m (2(z = 1)(p" +p") + 2%p" — 2p* + 2Pp — 2p 4 22p™ — 2zyp't — 227
+2zpH — 2wzpt — 22°p" + dyg" + 22" — 2¢M)
(2(z = D)(p* +p™) — 2°p* + 2pt — 2°p™ + 2p' — 2zyp'* — 2wt + dyg + 22" — 2¢"),
(2(z = D)(" +p™) = 2p" + zap” + zyp" + 2p" — 2p' + zap™ 4 2tp™ + 2p™ — 22yp™
—2zxpt + dypt + 22p™" — 2zpH — 2p* 4 2pH) |

m
m

m (2(z = 1)(p" +p'") — 2yp™ + zap™ — zap” + zyp" + 2yp' — 2yp" + 2p"" — 2ap’™ — 22p™

—2p" + 2xpt + 22p" + 22p"" — 22p" — 2p"M + 2pM)
=m(z(z = 1)(p" +p™") + (" — p") (22 — zy 4+ 2y — 22)),
=mz(z — 1)(p" +p™) +mg"(z - 2)(z — y).

When we combine these simplifications into the entire expression for the numerator, we see that

o =) [ (<5 () D (22— ) ) s 1) 0 ) ol - Do

omep €deL Setfou
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The Rosenbluth Formula
We are to prove the Rosenbluth Formula by considering the elastic scattering of a relativistic electron
off of a proton while correcting the vertex function of the proton. The amplitude for this process is,

a) Let us simplify the amplitude using the Gordon identity. Recall that we showed in class that
the generalized vertex function I'* may be written in terms of functions Fy(¢?) and F»(q?) as

Fy(q?).

Inserting this into the amplitude and recalling the Gordon identity, we see that

woH¥q,
I =~"Fy(¢®) + a

il = i (K u(kya(p T u(p),

q
e, ., " 0hvq,
= i Uk ) yeu(k)a(p) { 15+ Fy ) u(p),
e? iot’q W+, @)
= i alk)yuk)a@') (A F &0 P — F.
iU kyae!) (7 2 P - WP ),
e? [+ p)
= il o) (145 + 1) - T ) g
q m
/+ y
SR =t + B - & D) 5 F.
m

b) Let us compute the spin-averaged amplitude squared directly. We see that

64 , i / v
i ? Spglﬂ(k/)’)’uu(k)ﬂ(p/) <'YH(F1 + Fy) — (p;;np)FQ> u(p)u(p) ("}’V(F1 + Fp) — (p;';lp)Fz> U(p’)ﬂ(k)%U(k/),
N 46?% (K + me)yu (K + me)m]

/

{F+ Bl s ) = R+ ) T )

—Fy(Fy + Fg)%ﬂ (0 + m)(F+ m)y] + F2 T pi;g’; 0 7y [+ )+ m)]} ,

et / / / 2
= q—4 (k#ky +k,k, — g (K -k — m(,)) X

{(Fl + F)? (pFp” +pVpt — g (0 p—m?)) — Fa(Fy + B)(0' + p)* (' +p)”

2

F.
L+ P+ 0 ) |

p-p+m?

{(Fl + F)? (pFp” 0V p — g (0 p—m?)) + (0 + p)* (0 +p)” < 2 Fy — Fy(Fy + F2)> } :
8et

q4

[(Fl + ) (K - p'k-p+ K -pk-p—k -km®—p - pm? 4+ 2m>m?)

/. 2
L (Poptm?
4m?2

F} — Fy(Fy + Fz)) (k’ (0" +p)k- (0 +p) - %(k’ Tk —m2)(p' +p)2>} :

1
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c) Let us consider the kinematics of this reaction in the initial rest frame of the proton. In this
frame we see that p = (m,0),k = (E, E2),k' = (E',k'),p' = (E — E' +m, —k) with || = E’.
We have defined the momentum transfer ¢ such that p’ —p=q=%k — k'
Noting that p - p’ = m? + Em — E'm, let us compute p’2.
p? = (p+a)* =’ +2p-q+¢" =m>+2p-(p —p)+¢* = —m*+2p' -p+¢* = m*+2Em —2E'm+¢> = m?,
— ¢* =2E'm — 2Em,

2
E=E+ L
2m

If we write k' = (E’,0, E'sin 6, cos 0) so that ¢ = (F — E',0,—E’sin0, E — E’ cos 0) we see
0
¢* = E?-2EE +E?>-E?-FE"?sin?0—E?+2FFE cos — E"* cos®> § = 2EE'(cos ) — 1) = —4EFE'sin® 2

Using our identity derived above that £/ = E + L we may conclude that

2m?
0 2 0
¢® = —4E?%sin? = — q—4E sin? =,
2 m 2
-q27, 4E28iDQg
-4 = 2E .+ 20"
1+ ==sin” 5

Let us now compute all of the required inner products to compute the desired amplitude
squared. Noting that p? = p’? = m?2 k? = k'> = 0, and p - k = Em we may derive all of our
necessary identities and inner products indirectly (it’s more fun that way). We notice that

P=mP=p 4+ 2 g+ =-m*+2 p+ P

p/
) 2
. /. = _ .
Spp=m 5
Similarly,
pP=m?=p+2 g+ =m>+2p - k—2p -k +¢%
but we know that p -k = Em,
e
,'.p~k’:Em+5.
Likewise,
E?=0=k>—-2k-q+q¢*=2k-k +4¢*> =0,
e
k=
2
And

K?=0=k —2k-q+¢*=—-2k-p +2k-p+¢°,
where we know that k- p = Em and

'.k~p':Em+%.
Similarly,
k2:O:k/2+2Q'k/+q2:2p/'k'/+q2,
~p K = Em.
Tabulating our results, we have shown that
2 2 2
q / 2 4 ’ q
K -k=—-— ‘p= - = E-p=F -
2 pop=mTry p=FEmts
e
p - k=FEm+ = K -p =FEm p-k=Em.

2
These imply that

2 2
B +p)=2Bm+ T, K-/ +p)=2Bm+ T, and (p+p)’ = 4m’ — ¢
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d) We are to use the kinematic information derived in part (c¢) above to rewrite the spin-averaged
amplitude squared into a more convenient form. Recall that

i

8e?

///2=q4[ (Fy+ ) (K - p'k-p+ K -pk-p—k - km® —p' - pm? + 2m*m?)

n (WFQQ—FQ(FHFFQ)) (k’-(p’+p)k-(p’+p)— %(k’ k—mg)(®' +p) ) } :

ii iii
We note that in the approximation where k? ~ 0, we should set m, — 0. Let us compute each
part separately first before combining the results.
4 2

i () kD) (K - p)(k-p) = (- R)m® = (Bm)? + (Em)? + Bmg® + % + Tm’.
popt+m? 1 ¢’
u WFSQ — R\ F,—F2 = §F22 — WF;' — \Fy, — F2,
1 2 q2 2
= 5 (F2 +2F1F2+F1 Fl + WFQ B
1 2 q2 2
=3 {((Fl + Fp)? — <F1 - fmng .
/ / / 1 / / 2 q q4
iii. (- +p)(k-(p +p))*§(k k)P +p)? = A(Em)® 4+ 2Emq® + — 1 +¢*m? -

Combining these results, we see that the coefficient for the (Fy + Fy)? term will be
2 2 4

¢ q q q
2(Em)? + Emg* + 77t 5m2 —2(Em)? — Emq® — ?m2 =T
which can be written,
¢ P 2[2m2 ¢
1722 11 2Zgn?lom?
Similarly, we will combine the results above to compute the coefficient for the (F? — 4‘71;2 F2)
term.
2 4E*msin® ¢ 2E%m?sin? ¢
q . 2 2,2 2 2
2(Em)? + Emg®> + —m? = 2E*m? — — ,
(Em) 1 2 1+2E6in* 8 14 2Egin> g

2E2m? + 4E3msin® § — 4E%msin® § — 2m?E?sin® §
= 1 + 2 giy? 0 '

sin® 5
5 o lfsi2g 2E2m2cos2g
=2E"m 20 20"
1+—51 3 1—1——81 3

Therefore, combining all of these results, the total spin-average amplitude squared becomes

16¢* E2m , PV , 0
A2 =~ A0t Eam D) [(Fl ) 2F2> 5~ 2m 5 (F1 + Fy)?sin? 3

¢ % —~
omep €eL det€au
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e) Let us compute the differential cross section, ﬁ’lab. To do this, we will compute the cross
section in most general terms. From elementary considerations, we calculated that

1 d3pf 1 -
do = _ 3 (9454 _
7T 9EA2Eslua — vs) 1;[(%)3 2, | A |?(27) (pAerB > pf),
$Bp'd3k’ 1

1
i 5D (p+k—pf — K.

(2m)? AE'E]
We see that this is so because E4 = m, Eg = E, |[vq — vg| = 1 and there are two final states.

Let us now integrate over do to find its dependence on cosf. During the derivation, we will
make use of the fact that E+m = £+ E’ by energy conservation enforced by the dirac § function.
4E?sin? §
1+% sin? % .
Notice the insertion of the Jacobian for the change of variables to integrate over the energy
portion of the ¢ function in line 4. We will now proceed directly by first integrating over the p’
part of the integral.

2
We will also call upon our results above to use the identities £’ = E 4 5. and ¢ =

1 By Pk 1
= |do= —|M)? | = S p+k—p — K
/U mE " | e AE'E), Ptk —p — k),
1 a3k’ 1
=g / 4E’E’ ()(E’—E—m—i—\/m2+E2+E’2—2EE’0059)7
1 E'Z’dEdQ 1
W (E - 2 B2+ B — 2B cos0)
i 2 4E’E’6 m+\/m + + cosf ),
1 / dQ B (| B —Ecosf\"
~ 4m 2m)2 AE], E! ’
1 QO F E,
4m /27T24E’ E,+E' — FEcosf )’
1

Ry /dcos@ﬂ E, 7
" imB (2r) 4B, \ B, + E' — Ecos0
1 E'
~ 32rmE m+ E(1 —cosf)’

e AT [deos—p—y
= COS
32mm2E 1+ % sin? g’

1 E+q—
d gim
= 39mm 2E|///| / cos T

2E? sin?
m(1+ 25 gin?

)
+ E sm2

—|A? /dcos&

1[I

= mLﬁP/dCOSQ

N

2E 260  2E% .. 294
5T Tm Sin 5

1 -
= — % 2 d 9 9
Sl / o8 (1 + %sin‘l 92
1 E
-~ 327m2E

|///|2/dcost9(

1 .
= - | |? /dcos 0,
32rm2(1 + 2£ sin” §)2
1

32rm?2(1 + 2£ sin® §)2

~do
" dcosf

b 32rm? (14 22 in? )

‘. % ~
omep €deL der€an
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f) We will now derive the Rosenbluth formula. From our work above, we see that

16¢* E2m? {(Ff L FQ) cos? § — S (Fy + Fy)? sin® 9}

do _
dcosf |y, 32mwm? (1 + 2B g) 4(1+ 2E5in* 9) 7
et B2 [(Fl2 P F2) cos? (F1 + Fy)?sin? g}
- 4 sin4 £ ’
27r7(1fi i 5)2 (1 + 2 sm2 g) (1 —|— 2E gin g)
2 .
4 KFl2 s F2> s2 g — 3L (Fy + F»)? sin? g}

B 32w E2 sin* g (1+ % sin? g) ’

do B 2 {(Ff - = F2> cos? § — (F1 + Fy)?%sin g}
“dcosO|,, N 2E2?sin* ¢ (1 + W sm2 g) '

omep €deL Setfou



Paysics 523, QUANTUM FIELD THEORY II
Homework 4
Due Wednesday, 4" February 2004

JACOB LEWIS BOURJAILY

The Anomalous Magnetic Moments of e~ and p~
We are to investigate the possible contributions of scalar loops to the QED anomalous magnetic

moments of the electron and muon. First we will consider contributions from a Higgs particle, h. We
casually note that because the interaction Hamiltonian is given by,

k4 AL
i = / 4" S,

our vertex rule is

= fwu(p/);\/g\ ((p,k)zim%Jrie) (k/i2(}jnty+)ie) (_ie'}/#)% ?/ig)\u(p);

i = / <d4k a(p') [(K + m)y" (k +m)] u(p) o)

2m)4 (k2 — m? + ie) (K2 — m? + ie)((p — k)2 — m3 +ie)

Let us now simplify the denominator using Feynman parametrization. Using the same procedure as
before, we see that we may reduce the denominator to the form,

1
(k2 —m2 + ie) (k> — m2 + i€)((p — k)? — mj. +ie)’

= /dmdydz6(3)(x +y+z-1)

2
[2k? + yk? 4+ 2k? + 2ygk + yq? + 2p? — 2z2pk — xm? — ym? — 2m3 + (v +y + 2)ie)3’
2
(k2 + 2k(yq — zp) + yq* + 2p* — (1 — z)m? — zmj, + ie]?’

= /da:dydzé(S)(x +y+z—1)
Introducing the terms,
L=k+yq—zp and A= —2yg® + (1 — 2)®m? + 2m3,

we see that the denominator becomes,

2

(a.3)

We are now ready to simplify the numerator of the integrand using the parameters ¢ for equation (a.2)
above. There are arguably more elegant ways to go about this calculation, but we will simplify by brute
force. We will use, without repeated demonstration, several identities that were shown in homework 2.
Specifically, we will expand the integrand with the knowledge that all terms linear in ¢ will integrate to
zero and so may be ignored. Furthermore, we are only interested in terms that do not involve a v so in
the below tabulation of results from the Dirac algebra, we will simply write gv* — —2p* with knowledge

1
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that ¢v* = 2m~y* — 2p* because we are uninterested in terms proportional to v*.
We will begin our simplification with a full expansion of the numerator as follows:

N

a(p’) [(F 4 m)y" (k+m)],
=a(p) " K+ m Ky +my* §+m*y*] u(p),
— au(p’) [W‘ I—y(1 —y) " d+z(1 — y) " B —zy " d +2° py* p+m>H*
m(l —y) gv" +mz py* —my~* f +mz~* ﬁ]u(p).
~~ ~ — —

vi vii viii ix

Using Dirac algebra and our results from homework 2, we see that

(iV) - 2mp#a (V) - 2mp“a (Vi) - ,qu’
(vii) — 2pH, (viii) — 2p'*, (xi) — 0.

Using this result (which ignores all terms linear in ¢ and «*), we see that

N = TA[)| = 2mz(1 —y)p" — 2mayp’™ + 2m2pH — 2m(1 — y)p" + 2mazp” — 2myp'“} u(p),
= a(p) [y (~22y — 2y) + mpt 22y + 2y + 2% - 2)} u(p),
p) | m(p™ — p*)(~22y — 2y) +mp"(22% — 2)}%1(29),

= (D)) [m(p" — p)(~22y — 29) +mp# (22 = 2) + (=% = 1) — mp® (22 = 1) u(p),

= a(p)) (0" + p)m(z2 = 1) + (0 = pIm(1 = 22 = 22y — 29) |u(p),

A =T [+ P Im(EE = 1)+ (0 = )iy = )z = )] ). (1.0

We notice almost trivially that this satisfies the Ward identity because the term proportional to
g* = (p'* — p*) is odd under the interchange of x <> y while the integral is symmetric under = < y.
Therefore the term proportional ¢* will vanish when integrated.

Recall that our goal is to discover this diagram’s contribution to the anomalous magnetic moment, the
F»(q?) term. We recall that we have defined the corrected vertex function T'* in terms of the functions
Fi and F5 as

ioh’q,
2m

I =y"Fi(¢*) + Fy(q?).

Because the term proportional to (p* 4 p*) is multiplied on the outside by u(p’) and u(p), we may use
the Gordon identity to express it in terms of “';Tq” and v*. Because we are generally ignoring all terms

proportional to y*, we may substitute

ot q,

2_1 yn 9 21_ 2
m(z" = 1)(p™ +p) — 2m(1 = 27) ——

ic""qy

Because F(¢?) is the term proportional to the “%

term, we see that this implies that

d*0 i\? 2m2(1 — 22)2
2y _ (3 — -
Fy(q%) /dxdydzé (x+y+=z 1)/(27r)4 S At
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We may simplify this integral substantially by recalling our work in homework 2 when we computed
general integrals of this form. Taking the limit of ¢ — 0, we see that

d*0 iX? 2m2(1 — 22)2

2\ _ (3 — -
Fy(q%) /d:cdydzé (x+y+z 1)/(277)4 S AT
iA2 —i 4Am?(1 - 2?) 1}

:/dxdydz5(3)(x+y+z—l)[ > (in)? 5 A

A2m?2 . (1—22)
="—¢ [dodydz5® ~1
1672 | Y Wty +e ),zm%—i—(l—zﬁmg7

CNm2 ot (1—2)(1—22)
C16m2 Jy aem? + (1 — 2)2m2’

A2m? [t 1 I

~ m; {/dz 5 5 2—2/dz1—|—z—z2],
167 o zmi+(1—2)2m2  m; Jg
A2m? ! 1

= 1672m? dz omZ
Tmy |Jo o 2+ (1—2)

2
M,

[N BN |

(a.8)

Now, let us simplify this formula in the limit where the Higgs mass is very much larger than the
electron.

A2m? 1 LR T ¢
Fy(q?) = < / du—— =1,
16m2m2 |1 — %g me
L h “h
2, 2 1 2
= /\727%2 — (ln(l)—ln<m§)>_7 ,
167emy |1 — e my 6
L h
AZm? m? 7
- F 2 ~ e 1 it . Nl
< B (g) 16m2m3 [n (mg) 6} (b-1)

Let us try to compute this contribution for real experimental numbers. We can take a more or less
‘good’ estimate of the Higgs vacuum expectation value as v = 246GeV. We know that the coupling
constant A may be written in terms of the experimental mass of the electron as A\, = == V2~ 2.94 x
1076, If we take a rather hopeful estimate for the Higgs mass, we can assume it is near its lower
experimental bound at mj; &~ 114GeV. Using these numbers, we calculate an anomalous magnetic
moment contribution of

Shiggse ~ 2.58 x 10723, (b.2)

For the muon, we get a coupling to the Higgs of A\, = “#/2 ~ 6.03 x 10~*. Using the same
approximate Higgs mass of 114GeV, we see that the anomalous magnetic moment of the muon is altered
by

Shiggs@y = 2.51 x 10714, (b.3)

Let us now consider the contribution given for an interaction with an axion particle given by the

interaction Hamiltonian "
7 —
H = [ d*=ayy°v.
[ Taint

We see immediately that our vertex rule is given by
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Let us now write out the amplitude for the axion’s contribution to the vertex function. We see that

%75 ((pfk)ZimgjLis) (k’l2(f7jz_;n+)ie) (—iey™) %VS%U@L

il =

ex? / (d% —a(p) [7° (' +m)y" (€ + m)y®] u(p) (c.1)

2 2m)4 (k2 —m? +i€) (k2 — m2 +ie)((p — k)% —m2 + i)’

We can simplify the numerator and demoninator as before. Notice that the only change in the
denominator algebra is that A = —zyg® + (1 — 2)?m?2 — zm?2. In the numerator, we can commute the
~® through each of the terms to get a minus sign relative to the ‘slash’ terms. When we also take into

account the overall minus which multiplies the numerator, we arrive at

e [ dk u(p’) (K — m)y" (K —m)] u(p)
i = /(277)4 (k2 —m? +ie) (k2 — m? +ie)((p — k)2 — m2 + ie)

2

This is of course very similar to the equation derived in parts (a). Recall when we expanded all of the
terms for the Higgs, we had some of the ‘m’ terms that came from the Dirac algebra and some explicit
the equation as above. Taking these differences into account, we can use our work from part (a) to arrive
at a simplified numerator.

N —u(p) [ —2mz(1 — y)p* — 2mzyp™ + 2m2*p" + 2m(1 — y)p* — 2mzpt + mep'“} u(p),

/

|
g

= u(p’) :mp“(—%(l —y) +22° +2 — 2y — 22) + mp™ (—2zy + 2y)}ﬂ(p),

=1(p') :m(p’“ —p")(2y — 2zy)m + mp* (—4z + 22° + 2)] u(p),

=u(p) :m(p"‘ — p")(2y — 2zy)m + mp" (—4z 4 22 4+ 2) + mp'* (1 — 2)* — mp™ (1 — Z)Q] u(p),
(

" +p")(1 = 2)m+ (P — p")(2y — 22y — (1 — Z)Q)Tn} u(p).

Again, using the Gordong identity, we may write the contribution to F»(g?) as

d* iX? 2m2(1 — 2)%2
2y _ (3) — —
iN2 —i 4m?(1—2)% 1

= /dxdydzé(g)(z +y+z—1) [2 (in)? 5 A} )

P')

A2m? ! (1-2)3

1672 J, szg +(1—2)2m2’

FQ(QQ) — (C2)

Now, this integral cannot be so easily takn in the limit of a heavy axion. In fact, experimental evidence
strongly limits the mass of the axion to be very, very light. The most restrictive data, from Supernova
1987a, restricts mq < 10~%eV. In the limit where the axion is very, very much lighter than the electron,
we see that

2,2 1 _ \3
Fo(g?) = A‘m? (1-2) 7
16m2 Jo  zm2 + (1 — 2)?>m2
)\2 1 1— 3 )\2
~ 2 / dZ( 2)2 = 27
1672 Jo (1 —2) 32w
)\2
5axionae ~ 6axiona,u ~ W (03)
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Homework 5
Due Wednesday, 11" February 2004

JAcoB LEwWIS BOURJAILY

The Electron Self-Energy

1. We are to verify the equation,

/ (% <w2 e —1AAP> = s <AA> |

47 A
To evaluate this, we will consider differentiation of the integral with respect to both A and

Ap, considering them as separate, independent variables. Because the integration will commute
with these derivatives, we may use our results of to see

%dZA / (534 ([42 j AR [ 1AA]2> - / (giididi <[z2 j AR 2 1AA]2>’

- / (fj‘* (ddA 2 . AR dZA 2 1AA]2>’
-2 <§;§4 ([ez Sl —IAAP)’
i 1/1 1
2(477)25 (A - AA) 7
<47Z_r>2 (Al B D ’

_ o d d (B
T Undada, B\ A )
Because the differentiation clearly commutes with the constant factor, we have that

/ éiw/; (W - INERNTE —IAAP) - <4i)2 o8 (AAA) |

(1.1)

omep €deL Setfou
2. We are to find the roots of the simple quadratic,

(1 —x)ymd + xp® — 2(1 — 2)p? = 22p* — x(p*> + md — p*) + mZ = 0.
Invoking the quadratic formula, we see immediately that the roots are given by

o PPEme = (7 + mE — 2)” — 4pmf

2p? ’

4 2 2
5t o T o2 2p2\/p = 2p*(mg + p?) + (mg — p?)?,

= 4+ 2 _ 2772 _ — 02
2 2p2 2p2 2p2 [p (mO + ,u) ][p (mO ,u) ]

(2.1)

3. We are to verify that when p? > (m2 + p?) there is at least one real root of the equation where
x € (0,1). First, we will show that the solutions are real. By checking the discriminant, we see
that

[p* — (mo + w)?)[p* — (mo — p)?] > [p* — m — p?][p* — m§ — p? + 2mop] > 1[1 + 2mop] > 0.
Therefore the quadratic has only real roots. Now, let us show that the sum of the two solutions
is positive. Noting that 2 > 0, we have
2 _ 2 2 2
1‘1+l’2:17m0 2” >1*m0tu > 0.
p b
1
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Therefore at least one of the two solutions must be positive. Lastly, we can show that the product
of the two solutions is positive. This will guarantee that both solutions must be positive. By
direct computation, we have

rizs = 1 (04 md —1)" = (0 = (mo + 1) (02 = (mo = %))
= ((p2 +m = p?)” = (= md — i = 2mop) (p° — m — 42 +2m0ﬂ>) ’
> 4%)4 ((P2 +md = p2) = (p* +mE — u® — 2mop) (p* +mi — 2 —|—2m0,u)) ,
= 4%,4 ((p2 +m —p2)” = (p* +md — )’ +4m0u> :
= ";?1“ 0.

Therefore, there are two real solutions to the equation. To show that a solution is confined to
the interval (0,1) we note that in the physically reasonable case where i — 0, the x5 solution
becomes

w3 = 211? (p +mg —\/[pz—mﬁl[pQ—m(%])7

=55 (PP +mg — = p* —mf),

=— <L
Therefore € (0,1) is a real root of the quadratic equation of interest.

4. We are to show that 6F(0) + dZz = 0. To do this, we must first compute §F;(0). Let us recall
the content of Peskin equation (6.47) while taking ¢ — 0,

1 10w ro (=302 —4z 4+ 22Yym2) | u
u(p')éf“u(p):42'62/0dxdydzﬁ(?’)(x—i—y—i-z—1)/(;i7r§4 @) [ (3 [;(i A]t +2)m’)] (p)

We see that this term is just proportional to the §F;(0) term in our expression for dT*. To
actually compute this integral, we will require Pauli-Villars regularization of the term propor-
tional to £2. Also, we will use the fact that limy_,.o Ay = zA%2. Now, invoking the results of
homework 2, we have that

SF4(0) = die? /Oldxdydzé(?’) (x+y+2—1) /(534 [(—1) ([62 EQA]S - B [ZAAP) e _[;H:]?W}

1 A i (1—4z+22)m?
— 4ie? ®3) -1 1 A) -
ie /dedydz5 (@+y+z ){2(4 2 Og( A ) 202 A ’

A 1—-14 2,2
g [y e (3) 00|

2A? N (1 -4z + 2%)m?
(1 —2)2m2 4 zu? (1 —2)2m?2 + zu?
1 2 2Y,,,2
e zA (1—42+42*)m
=— [ dz(1-2)]|] .
o [0 s (e )+ (2 )
Quoting Peskin equation (7.31),

1 2 2
o« zA 22(2—-2)(1—2z)m
‘%‘%/odz{ Zlog<<1z>2+zu2>+ A= 2Pt o |

zA? (1—2)1—4z+2)m? +22(2 — 2)(1 — 2)m?
+
(1 —2)2m?2 + zp? (1 —2)2m?2 + zp?

zA? m2(z3 — 22 —2+1)
(1 —2)2m?2 4+ zp? (1 —2)2m?2 + zp?

-2 / drdydz6® (z +y+ 2 — 1) [log (
271— 0

Therefore,

1
SFL(0) — 82 = — [ dz [(1 —22)log <
27T 0
1

| dz [(1 —22)log <

27T
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To evaluate this integral, we will integrate the first part using integration by parts.
!

that, in general, (log %)

f g

1 2
zA
dz(1 —22)1
/0 A 2)log ((1 —2)?m? + zp?

ZzA2

2
1
(=

_ /1dz m2(1 — 22)(z — 22)
o 2((1=2)2m2+2p2)’

/dz

)

)

1

m2(1 — 22)(z

3

Recall
%. Therefore, we may compute,
u ‘ dU
2
log ((1%)5%) N (1-22)
m?(1—2%) - 2
(DT N

_2?)

1
f/dz
0 0

)1 2A?
) log (1 —2)2m2 4+ zu?

Therefore, we readily see that

SF1(0) — 62

1
g/dz
™ Jo
1
g/alz
™ Jo
1
g/alz
271—0
0.

1
g/dz
™ Jo

2zA?

2((1=2)°m? + zp?)’

— 22 +2))

/dz

2m2+z,u )

-(1 —2z)log <(1 —RmE z;ﬂ) +

m2(zt — 23 — 22+ 2)

(L= 2Pm? + 2

m2(zt — 23 — 22+ 2

m2(z3 — 22 —2+1)
(1—2)2m2 + zpu?
m2(23 — 22 —2+1)

9

_m2(z4—z —22+z

; (1 —2)2m?2 + zp?

%)
)
(L= 22m? + 2?)
)
(L= 2)2m? + 2?)

o 0F1(0) —

2.

m2(z* — 2% — 22 —|—z)}

(L= 2m? + 222)

0Z5=0.

m2(z3 — 22 —2+1)
(1—2)2m2 + 2p2 |’

¢ 7/ ~
omep édeL det€an
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Homework 6
Due Wednesday, 18" February 2004
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Dimensional Regularization

a) We are to evaluate the expression

d g 1
— > 9.
/ @0 @+ o "

In homework 2, problem 3 we showed that the d-dimensional volume element ; = -

Using this, we see that

/ddﬂE I / dQq /Oodg 03!
2m)d (2 + A~ | (2n)d RN,

2m /2 a0 a1
(2m)4T(d/2) / YN

2 gd 1
= e </2>/0 o Ry

1 1 /oo ( ) (62 )d/2 1
T @mIPTd2) Jo B+ A
We will defined the integration variable

d(f%) and (%4 =An~'(1-n).

A
—_— S h h = —_————
(& +A) such that dn GCEWNE

Note that under the 7 substitution, the limits of integration will change from (0, 00) — (1,0) ~
—(0,1). Also note the use of the definition of the Euler Beta function below. Making this
substitution in the required integral, we have

dUg 1 1 1 © (4321
G NI >d/2r<d/z>/o W) Ay

1 1 / Ad/271,,717d/2(1 _ n)d/271
~ (4m)i2 T(d/2) A (05 + A2 ’
1 1 1\2-42 g1 ANZTT )
= a7 dn( =) 'R —p)2
~ (4m)d/2T(d/2) 0 "

1 1

2-d/24+n—2 ,1
/ dnnnf2+17d/2(1 _ n)d/2717
0

nid/Q ! d/2 d/2—1
) /Odnn”’ 271 — )2,

—
>~
3

~—

S
~
[\v]

—~

~

~

n=d2 P — d/2) - T(d/2)
I'(n) ’

) d g 1 B 1 T(n—d/2) (1 n—d/2
"/(27r)d (72, + A~ (4m)d2 T(n) (A) : (a.1)

omep €deL Setfou
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b) Let us now evaluate the expression
dUg 2
——=—— formn>2.
/(QW)d (5 +A)"

The evaluation of this integral will proceed identically to that in part (a) above. We will
introduce the same integration variable n = (GE) and follow the same procedure. We see that

+A)
dig 063 [dQg [ o5
/ @2m)d (% + A / (2m)d / e Ay
27Td/2 0o £d+1
= @0 a2 / (PN
1 1 0o (62 )d/2
= )2 T /2> / W) @+

1 Ad/Z 7d/2(1_ )d/2
L A/ @1 Ap2

(47r1)d (;/2) <i>1 d/2/0d77 (?)M (=),

1 1 1\ 1-d/24n-2 1 ) )
dnn—1=4/2=1(1 _ p)d/2+1-1
= ami T(d2) ( ) / m (L=

1 1 I\ ' P(n—1-d/2)-T(d/2+1)
~ (4m)?2 T(d/2) <> I'(n) '

Recall the elementary property of the I' function that al'(«r) = I'(aw+ 1). Therefore we see that
I'(d/2+ 1) = 4T'(d/2). Using this result, we see immediately that

n—d/2—1
,./ddeE G 1 dr(n—g_1)<1> / | (1)

Cmi(Z +A) — (4m@22 T(n) A

omep €deL Setfou
c i) Let us show the following identity,
VY Y = —(2—€)y”
Simply applying the anticommutation relation of the v matrices, we see that!

ez

YV Y = G VY = 290097V = Gup APy = 20091 — dy” = (2 = d)y”,

(c.1)

¢ % ~
omep €eL det€au

S = =2 -y

c ii) Let us show the following identity,
YA APy = 49" — ey yP.
Simply applying the anticommutation relation of the v matrices, we see that

AV

Y'YV = Gua V'V VY = 29009V Y — 20109 + GuoV V7YV
= 207719 = 200919" + dy" P = 29P9Y + 29797 — Ay + dyP,

HaV

YA = 49" — ey (c.2)

‘. % ~
omep €del der€an

Lwe will repeatedly use that g, v*v* 2 = gupv"y*Z by symmetry of the inner product together with g, ,v*v* 2 =
29upg"P X — gupyPyH* £ from the anticommutation relations, imply that g.,v*v*Z = gupg"? Z = dZ for any product
of v matrices 2.
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c iii) Let us show the following identity,
YA AN = =297 + ey P
Simply applying the anticommutation relation of the « matrices, we see that
VY YV Ve = Gur VYAV = Gur (297TVYAP = 29T AT + 297 T AP — gHT AP T)
= 20,1 y" P = 20041y YT A 20,07 — Ay P = 29790y = 4gP Py 4 (4 — d)y P,
=4g""7 = 2979P9" — 49”77 + ey"v"7,

] YA Py, = =297 9Py 4 ey P (c.3)

‘4 % ~
omep €deL det€an

The Ward Identity

a i) Let us compute the integral

[
@' (@ - A

by restricting the integration region to the Euclidean sphere with /g < A. To accomplish this
calculation, we will recall several important results from earlier homework problems. Namely,
we will use the standard 4-dimensional volume element and change to Euclidean coordinates ¢f.
Notice the u substitution below.

/d4€ 1 _/dQ4 /oodg &
2m)d (02 — A2 J(2m)4 2 — A2’
0
2% [ @,
- <47r>2/ e war
1m /dﬂE €2 +A

A+A
= lim
47T2A /

7

A2+A
* A

—~

ii) We are to compute the function Z; from the 6I'(¢ = 0) calculation. Recall that in homework 5
question 4, we computed § F (¢ = 0) using a different regularization. Because §7; = —§F;(¢ = 0)
much of our ‘hard labor’ has already been completed. Let us begin our calculation.

57, = —4ic? /Otiz(l —2) /g;i [—; @ i)?) + mQ((;_i;ZQ)}
— _die? /Otiz(l —2) /g;i [—; ((E2 _1A)3 7 _AA > + 2((22_42;22)}

= —4ie? /Otiz(l —2) {—

8o () )
—O;T/Otiz(l—z) {log(i) 1*4”2 ]
57— 40; ig(f) m2(1 4z—|—z)

omep €deL Setfou
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iii) Let us now compute the value of the electron self-energy function Z;. First, we must recall the
definition of Z5. It is the function

d¥s
Zy = 2
02 dy

=m

where

) ! d¥ —2zp+4m o [* A?
Yo = —zeQ/Odz/(27r)4 (- A2 = —W/Odz(Zm—zp/) {log (A> - 1}.

Using the chain rule for differentiation, we see that

oz 2 [ o () 1) 290

iv) We will now compute the difference Z5 — 71 = §Z5 — 6 Z; for this regularization scheme. We will
call upon Peskin and Schroeder for algebraic simplification within the integrand. The cancella-
tion of the log-type term with the 1/A term was shown in homework 5. We have

a [t A2 3 2m2z2(2 — 2)(1 —2)  m2(1 — 4z + 2?)
Lo — 041 = — 1—-22)1 — ——(1-— —
02y — 0624 27r/Odz{( z)og(A)+z 2( z) + A A ,
« ! 3 « 1
Cor Odz {2_2(1_2)] Cor <_4)’
o
00y — 07 = ——.
s 0oz ! 8

b i) Let us repeat our above calculation using dimensional regularization. We can begin our work
by generalizing the Dirac algebra used to calculate §Z;. Notice that this calculation will require
our d = 4 — e dimensional generalization of the Dirac algebra to simplify the numerator in

/ddf VWD)V I+ 2 )
2m)? (@ — Ay '

Although we have already simplified our work by leaving off terms proportional to ¢, we may
reduce our labor even more. The regularization of this integral in d-dimensions is presented to
make sense of the divergence of the integral. Computing the integral in d = 4 — € dimensions,
we avoid the divergence of the integral due to the term proportional to ¢? in the numerator.
However, we should notice that no other terms in the integral will have a power of £ < 4 in the
denominator and therefore will not diverge.

Therefore, only the £2-term will need to be regulated and the other parts of this integral can
be computed as usual.?

Let us then compute the regulated coefficient of the £2 term in the the numerator. To do
this, we will use our algebraic results from problem (1.c.iii) above. We also remind the reader
that in d-dimensions the integral is symmetric under ¢#¢¥ — é’y‘“’EQ. Therefore we see that our
regulated term is simply

1
ST (q* = 0) = 2ie? /dz(l —2)
0

Ao

Y P = Lol YA Y,
= Lpls (=297 V9P 4 evPyH 7)),
= —4 0" + 2 Pyt 4 2e U — € PP,

4 2
= —gEQW” + 20241 4 5427“ —el?h,

—4+2

:’y“ﬂQ (;_ 6—}—2—6),

_2)2

— /LEQ (6 .
7 d

2Tt makes little sense to regulate a convergent integral. More rigorously, one could carry € dependence on all terms and
then ‘observe’ that for all but the term proportional to £2 in the numerator, ¢ — 0 will not affect the integral. Therefore
we may view the introduction of € into those terms as a waste of time.
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Now that we have fully established the need only to regularize this piece of the integral, let
us calculate the regularized form of §7;. During the computation below, we have referred to the
canonical results for expansions of A, T, @n 4 ) in terms of e. Many of these relations were derived
in homework sets 2 and 5. Let us proceed directly.

- div [(e—2)2 2 m2(1 — 4z + 2?)

67, = —2ie? /dz / 27m) { d (Z—A)p3 + ZEUNE }
_ -2fd i TE-9) i 1 m-se)
= —2ie? /OdZ(l ) [ d 4 (4n)i? Az—d/z 2 (4m)? A ’
e L ) e el

; 2 1m2(1 — 4z + 22
07 = g/dZ(l—z) [— ( —2—logA—’7E+log(47T)) = m('z“)]
2’/T 0 € 2 A

ii) Let us now regularize the term Z. This computation will be very similar to that above. We
will first need to rework some minor Dirac algebra. Unlike last time, however, the entire integral
will diverge and so we will need to keep ¢ terms consistently in our equations. Recall that Z5 is
related to a derivative of the integral

di *(
— —je /dz/ P+ Z_ﬁ;‘);n)
Recalling that terms proportional to £ in the mtegral will integrate to zero because of Lorentz

covariance, we may drop the ¢ term. Furthermore, using only the relatively trivial Dirac algebra
identities derived above, we see that

YW+ zp+m)v, — —2(2—€) P+ dm.

Therefore we may compute this integral directly.

d
) = —ie /dz/dg —(2-€ezpt(d—em )(g 1A)2’
= /dz l( (2—€zp+(d—€em )(47:)(1/2 FA(i_d/;)

1 2
20; dz [2 (A—em—(2—¢€)zp) ( —logA —vg + log(47r))]
Therefore we see by blmple chain-rule differentiation that
az,
dp

)

07y =

_o gt {(e 9. <§ —log A — yp + 10g(47r)> _m2e( - ) ((EA’ 2)z+(4- 6))}

2 Jo 2
m22z(1 —2) (2 — z)],

p=m
1

— [ dz [2 (1 2 +log A+ g — 10g(47r)> —
0 €

27 A

iii) Unfortunately, I was unable to derive the explicit cancellation. It appears as if I may have
introduced an incorrect minus sign somewhere. In the correct form, one should see the total
integral vanish so that

079 — 6721 =0.
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Superficial Divergences
Let us consider ¢? scalar field theory in d = 4 dimension. The Lagrangian for this theory is
1 1 1

_ 2 -2 2 @ - 3
f—z(@m) 5T 5199

a) Let us determine the superficial divergence D for this theory in terms of the number of vertices
V' and the number of external lines N. From this we are to show that the theory is super-
renormalizable.

In generality, the superficial divergence of a @™ theory in d dimensions can be given by
D = dL — 2P, where L is the number of loops and P is the number of propagators
because each loop contributes a d-dimensional integration and each propagator con-
tributes a power of 2 in the denominator. Furthermore, we see that nV = N + 2P
because each external line connects to one vertex and each propagator connects two
and each vertex involves n lines. This implies that P = 3(nV — N).

Therefore, still in complete generality, the superficial divergence of a ¢" theory in d-
dimensions may be written

D:dL—2P:gnV—gN—dV+d—nV+N,

d—2 d—2
=d —d|V - ——N.
+ <n 5 > 5
Therefore, in a 4-dimensional ¢3-theory the superficial divergence is given by

ID=4-V -N. (La.l)
omep €del Setfou

We see that because D o« —V the theory is super-renormalizable.

b) We are to show the superficially divergent diagrams for this theory that are associated with the
exact two-point function.
Using equation (1.a) above, we see that the three superficially divergent diagrams in this
p3-theory associated with the exact two-point function are:

¢) Let us compute the mass dimension of the coupling constant g.
Because . must have dimension (mass)* each term should have dimension (mass)*.
Because of the m?¢? term, this implies that the field ¢ has dimension (mass)?!.

Therefore the coupling g must have dimension (mass)?!.

Renormalization and the Yukawa Coupling
We are to consider the theory of elementary fermions that couple to both QED and a Yukawa field ¢
governed by the interaction Hamiltonian

i /d%eAm“w.

a) Let us verify that 6Z; = §Z5 to the one-loop order.

We computed in homework 4 the amplitude for the ¥y1) vertex with a virtual scalar ¢,

d*k —( 7\ —i) i i(f +m) : if+m)  —id
) UP) 75 Gmmromrie) Wm0 ) g s WUP);
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In the limit where ¢ — 0, we see that this implies

" o u(p) (¢ + m) " (¢ + m)] u(p)
U(p)oT ulp) =i /(%)d (p— k)2 —m2 +ie) (k2 —m? + ie) (K2 —m? + ie)’

Using Feynman parametrization to simplify the denominator, we will use the variables

b=k—zp and A=(1-2z2)7*m*+ zmi.
The numerator of the integrand is then reduced to
N = ﬂ(p) [+ 2+ m)¥" G+ 29+ m)] u(p),
p) A" I+ 2 " P+ mz g+ may - mPy ] u(p),

0[5
) | (2500 4 w427 | o)

Combining this with our work above, we see that this implies

2 1 d 2-d 2 m2 22
5Zl6F1((J0)z'>\2/0dz(1z)2/(d€ [[e(d)é L mdrz)

C2y" = dy") 4 22mP " 4 mPat + mP eyt + mQW“} u(p),

2m)e | {2 —A+icP " [P — A+ i€
Az [t )lde i TE-9 i m2142)?
z

=% [dz(1 - ¢ -
5 ) d 2 (@dmda2 AXd2 T (4m)2 A ’

A2t 2—-d (2 m?(1 4 z)?

~ 1-— —— [ ——logA — log(4 -
/Odz( z)[ > (6 0g A — v + log( 7T)) 3 }

A2t e—2 (2 m2(1 + z)?

A2t 2 m2(1 + z)?
VAR 39,2 /Odz(l —z) {1 - (e —logA —vg + log(47r)) - A} (2.a.1)

Let us now compute the one-loop contribution of ¢ to the electron two-point function,
p—k

22 rd'k i(b+m)
2 J(2m)T ((p—k)2—m2 +ie) (k2 —m2tie)

! \ = X4, =
Ty p
We will define the following variables for Feynman parametrization of the denominator:
{=k— zp, and = —z(l—z);/z—l-zmi—&—(l—z)mZ.

We see therefore that

A2 /d /ddﬁ zg+m
v =1y — A +i€e]?’

‘ i I(2-19%)
) /Odz(zﬂ ) Gy pra

A2t 2
~ — /dz(zp/Jr m) ( —log A —~vg + log(47r)>.
™ 0 €

3272
Therefore,
0% by A2t 2 2mz(1 — z)
- - Z _logA— log (4 AT 2
875 o/ 3973 /odz 2| - og A — vg + log(4rm) | + (zm + m) A )

2m22;(1+2’)(1 —Z)} (2.&.2)

A2t 2
00y = ——— — —log A — log(4
.07, 3972 /Odz [Z (6 og ~vE + log( W)) + A
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Let us now compute the difference 75 — §7;. We see that

522 —521 = 3;\ 3 OdZ _(1—22)10g <i> —|—(1_22) <§ —7E+10g(47r)> —(1—2’) . m (1 *Z)(lJrz) (22_ (1+Z)) ’
)\2 1 1 m2 1_ 9 1 ;
= 392 d _(1—22)10g (A>_(1_Z)+ ( A)( + )}
327r2/dz (1-9-= (1—2(1_2 o-g+ (1_A) (Hﬂ,
- m2(1fz)2(1+z) m2(172)2(1+z)
32w2/d B A + A }
’ 04y — 0641 =0. ‘ (2&3)

omep €deL Setfou
We can expect that Z; = Zs quite generally in this theory because our proof of the
Ward-Takahashi identity relied, fundamentally, on the local U(1) gauge invariance of
the A, term in the Lagrangian which is not altered by the addition of the scalar ¢.

b) Let us now consider the renormalization of the 1)@ vertex in this theory.
The two diagrams at the one-loop level that contribute to @(p’)dTu(p) are

These diagrams yield

., [d%_ D) i i(f+ ¢+ m) il 4+ m) Y
D) = figma ) K‘ﬂ) (o (e N ] )

i+ ¢+ m) —i il +m) e "
O+ 0)2 —m) (0= R~ 12) (k2 —miZ) ”“)} ®)-

Taking the limit where ¢ — 0 and introducing the variables

+(—ier™)

L=k —zp, AL =(1-2)*m?+ zmi, and Ay = (1—2)°m? + zu?,

this becomes,

1 d 2 2 2m2 2 m2 22 z _
a(p)aru(p)z/odz(l—z)/d Ed (») lvMH)_%eadf +m? (d(2? +1) + 22(2 d>)] ul(p).

(2m) (2 — Ay +i€)3 (2 — Ay +i€)3
Therefore,
! die 24 (1 + 2)*m? de* +m? (d(z2 + 1) + 22(2 — d))
Zy = —0F] = 1- —i\? 2ie?
VA Y2 /Odz( Z)/(27r)d i CEYNETAE + 2ie (= Dyt i0) )

= /ldz(l - z)/ddg —iAQL +2ie2d—£2 + finite terms
) (2m)d (2 — Aq +i€)3 (2 — Ay + i€)3 ’

_ [ Nod T(2-9) ¢ & I'(2-9)
=/ z(1-z) 4 @mAR N2 T Y (4w p2

+ finite terms,

! A2 (2 1\ 2a (2 .
= 0dz(l —2) T6n2 —log Ay — vg + log(4m) — 3) o\ log Ay —vg +log(4m) — 1 )| + finite terms,
1 2
= /dz(l - z)g )\— 2 + finite terms,
0 e \1672 7

1 A2 200
07 = (167‘(‘2 — 71-) + finite terms. (2.b.2)
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Now let us compute 6Z5. We see that this factor comes from the diagrams,
p—k p—k

PN
— l/ \ + - m

e L |

p k p p k p
We see that we have already computed both of these contributions; the first diagram’s
contribution was computed above and the second diagram’s contribution was com-
puted in homework 6.
Therefore, we note that

1 A2
Combining these results, we have that
3 [ « A2
. o A :
.02y — 62, ; (271_ 327r2> + finite terms # 0. (2.b.4)

omep €deL Setfou
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Renormalization of Pseudo-Scalar Yukawa Theory
Let us consider the theory generated by the Lagrangian

Z = ( IJ«¢0) m¢o¢ +,¢) (Za meo)wo —igoao’ﬁ%%-

Superficially, this theory will diverge very similarly to quantum electrodynamics because the fields
and the coupling constant have the same dimensions as in quantum electrodynamics. Therefore, we see
that the superficial divergence is given by D = 4L — 2P; — P, where L represents the number of loops
and P, and P, represent the number of pseudo-scalar and fermion propagator particles, respectively.
Furthermore, we see that this can be reduced to

D=4-N,— gN (a.1)

where N, and N, represent the number of external pseudo-scalar and fermion lines, respectively.
We see that this implies that the following diagrams are superficially divergent:

a) D=4 D=3 c) -- - D=2
- D=1 D=0
D=0

Although vacuum energy is an extraordinarily interesting problem of physics, we will largely ignore
diagram (a) which is quite divergent. We note that because the Lagrangian is invariant under parity
transformations ¢(¢,x) — —¢(t, —x) any diagram with an odd number of external ¢’s will give zero. In
particular, the divergent diagrams (b) and (d) will be zero.

The first divergent diagram we will consider, (c), is clearly ~ agA?+a1p? log A where we note that the
term proportional to p in the expansion vanishes by parity symmetry. Similarly, we naively suspect that
the divergence of diagram (f) would be ~ agA+ glog A but the term linear in A is reduced to m. log A
by the symmetry of the Lagrangian of chirality inversion of 1 together with ¢ — —¢. The diagrams (e)
and (g) are both ~ log A. All together, there are six divergent constants in this theory.

We note that because the diagram (e) diverges, we must introduce a counterterm §, which implies
that our original Lagrangian should have included a term %¢4.

We define renormalized fields, ¢, = qu/ 2¢ and 1, = 221/ 2¢, where Zy and Z; are as would be
defined canonically. Using these our Lagrangian can be written as

L = 2O — 5L, 6 — Ui~ me )~ —ige 2o 0 — 2 T

Let us define the counterterms,
Oy = Zym2 —m2, O, = Zome,—me, 85 =Zy—1, 6y =NZ2-\, & 22 ZMP1, 6y = Zy—1.
Therefore, we may write our renormalized Lagrangian
= (0,0 - 1m3,¢2 PP~ me ) — il — 6"
§ 300000 — 30, 6+ B8 — D 0 — igh1T W0 — (2.4

1
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Let us compute the pseudo-scalar self-energy diagrams to the one-loop order, keeping only the diver-

gent pieces. This corresponds to:

Ok k
‘o
\
7’LM2(p2): ———»——‘——»—— —+ ——’-—O—,—— =+ -—-»——®-__>__
p p p p p p
k+p
Using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ¢~!) we see that
A [d% Ak [Pl P+ me)in® # + me)
—iM? 2:_;/77_ 2/ T e e [(p?0s — Om. ),
M= Jamiw w7 Jam [ w2 -z | 0 0m

A 1 T(1-95) Lordik 2 —a(l-a)pt-m?
I Gy Gugyiaz 494 R 100750 ).
r2-s)

)

2 B ) ar (1 — —) i - ,
4g /Odfﬂ [ (47r)d/2§ Al—d/2 + (47r)d/2 AZ /2 (:E(l x)p

A mp  T(2- %)
/2 (1 —d/2) (m?)2=d/2

2 (4w
+ Z( 2545 - 5m2)7

+ mg)

Am? i 2 [t i 2! i
327:; —8¢° (4m)2 € /de (mg —2(1 —2)p?) Ze /de (me +2(1 = 2)p*) +i(p*0p = om.),
AmZ1 g% 2 2 1 .

- 167:; ‘a2 e <2m5 + gt mﬁ) +i(p?0g — O,

. 2,2 2.2 1
_ @ gp- _gmg\ L1 . 25, _§
Z<16ﬂ'2 12 2n2 > ¢ TiP70g = Oms).

Therefore, applying our renormalization conditions, we see that!

Am? 2m2\ 1 1
¢  gmg g
. - —_—(Z2Z_)= 1
- Om, (167r2 272 ) €’ % (47T2) € (b-1)

Similarly, let us compute the fermion self-energy diagrams to one-loop order, keeping only divergent

parts. This corresponds to: k:
p—

N
—is3¢) = L —R—
300 =
p b

=Y
™
=Y

Again, using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ¢~!) we see that

—q _ 2 dk 5 7 i +me) s i -
E(m =g /(277)(1 |jy ((p k.>2 _ mi) (k2 _ mg)’}/ + (ﬂ(sg 5m6)’

_ 2 dk ¥ —me . B
- /(QW)d(kQ—WQ)((p—kF—mfb)+ 2 = bm.).

/ /ddé Pz—me i — o),

/dz Wz —me) + (o2 — Om.),

i
(Y gme\1 ,
=1 — — + iy — i, -
(16#2 82 ) € i e
Therefore, applying our renormalization conditions, we see that
2

2
g me\ 1 g 1
s 1 _ 1 2
- Ome ( 82 ) €’ 02 (167r2) € (b-2)

IFor renormalization conditions and Feynman rules please see the Appendix.
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Let us now compute the §; counterterm by computing 6I'°(q = 0) given by:

k+
|
T%(q=0)=p—k! D---- _——-
|
R4~ 0

Again, using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ¢~!) we see that

v .o [d% VO H A+ me)y® # + me)y°
5F5(q =0) = —ig /(27T)d (p—k)2— mi)(kz —m2)(k* — m?) + 6177,
_ . d’k (# + me)l — me)
= 19275 /(277)‘1 ((r— k)2 — m¢)(k2 —m2)(k2 —m?) + 61’}’57

dde £2 (22 —1)m s
=ig*y° BYNE +5w ;

) 2
ig*y° /dz (1-2) [ Z) ;i }—1—6175,

= — 7,5
78 +1’Y

Therefore, applying our renormahzatlon conditions, we see that

o= (;;) % (h.3)

Let us now compute the §y counterterm by computing the one-loop correction to the standard ¢*
vertex. The five contributing diagrams are:

- N , N
\ / \\ s S i ~ , N s
- ~ - \ / N 7 ~ //
7 > N 4 N
/ N 77N < N 7
1M = /\ V\ + l\ | + R + + @
/ V N N
N Se< / -7 \ , N i N
- S a , . L’ S . S
/ \ -~ ~ / \ s, ~ 4 N

We may save a bit of sweat by noting that the sum of the first four diagrams is identical to the analogous

diagrams in ¢*- theory. The sum was computed fully both in class and in the text and give a divergent

contribution of 6>‘ 5 i to ). Therefore, we are only burdened with the calculation of the remaining two.

We see that, (note the combinatorial factor of 6)

1672 € @2md [(k2 =m2)((k —p1)? —=m2)((k —p1 *Pz) m2)((k — p1 — p2 + p3)? — m2) ’
B 4/ddk Tr [v° KY° B7° K7 ¥ s
ke T16m2 e (2m)d (k2 — m2)* A
C3A% 1 4/ddk 4k _
- = — 0y,
1672 ¢ (2m)d (k2 — m2)4
3X%2 1 i dd+2)T(2-9) .
=iy~ — 24g /2 ( ) (27d22)_7’5)"
1672 € (4m)d/ 4 6A2-d/
I SRR VE B
1672 € w2 A

Therefore, applying our renormalization conditions, we see that

3\2 3g*
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APPENDIX
Feynman Rules and Renormalization Conditions
Given the Lagrangian for pseudo-scalar Yukawa theory,
= L0409 — g B —m)y — ig 6 — 6"

1 1 — " 0
+ 306(000) = 50,0 + B(i029 — ) — igh T w6 — ",

we can derive the renormalized Feynman rules.

----- e B (JPEET: - = Fmerie
S s,
S -
N i 5
\,.,\ — i) -——=- =97
e A
4 N
4 N
s ~
e @mn 5 ) ®—=— =it m

s

N _ 5
@ — —iby ---- = g1y
A

To derive the counter terms explicitly, it is necessary to offer a convention of renormalization condi-
tions. Above, we have used the conditions:

4

Y=m)=0
Q)|
i 0.
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G-Functions in Pseudo-Scalar Yukawa Theory
Let us consider the massless pseudo-scalar Yukawa theory governed by the renormalized Lagrangian,

_ o A\
£ = %(aﬂ(ﬁ)? + i Y — igpy e — E(&
_ . 5
+ %5¢(3u¢)27/)i5w I — 196,y Ve — 47>'\¢4

In homework 8, we calculated the divergent parts of the renormalization counterterms dg, dy, dg, and
0 to 1-loop order. These were shown to be

2 2 2 2
g A g A
bp = ———log — Sy = ————log ——:
¢ {72 0g M2’ Y 3972 og M2
3)\2 394 A2 g2 A2
=== — =L ) log — 8y = log —-.
A (3%2 27r2> NCUVER 97 162 28 212
Using the definitions of B; and A; in Peskin and Schroeder, these imply that
2 2
Ao == "5 Av =" = "5
3g4 3)\2 g2
By =L — B, = — .
AT o2 T 32q2 97 T 1672
Therefore, we see that
2 2 2 3
g g g 59
= —29B, — 2gAy — gAs = 29—— + 2 == .
Py 9Bg = 298w = 986 = 20765 T 20555 T I8 = 1642
3\ 3¢* g*> 322+ 8)\g% — 48¢*
= —2B) —4\A, =2 - = = =
Ba A ¢ (3271'2 27r2) 872 1672

While it was supposedly unnecessary, the running couplings were computed to bel,

a(p) = 1672 )
9P = 1—10logp/M’

) _ 41454149 4+ g2V145/5 )

VR YT 141 9
Ap) =X =73 <1 VI _ g2V1a5/5
141

Notice that both § and X\ generally become weaker at large distances because for typical values
of g, A we see that 3, and 35 are both positive. However, if A << g then 8 will be negative and so A
will grow stronger at larger distances. Near small values of g and A the theory shows interesting interplay
between ¢ and A. Also interesting is the characteristic Landau pole in A suggesting that we should not
trust this theory at too large a scale.

Below is a graph of g versus —\ indicating the direction of Renormalization Group flow as the inter-
action distance grows larger.

FIGURE 1. Renormalization Group Flow as a funciton of scale. Arrow indicates flow in
the direction of larger distances. For this plot, M was taken to be 10%.

ISee appendix.
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Minimal Subtraction
Let us define the S-function as it appears in dimensional regularization as

d
BAe) = M)

)

)\076

where it is understood that B(\) = lim._q 8(\, €). We notice that the bare coupling is given by Ay =
MeZ\(\, €)X where Z) is given by an expansion series in e,

Za(\€) = 1+Za”6—9).

We are to demonstrate the following.
a) Let us show that Z) satisfies the identity (3(), €) + eX\)Zy + B(Ae)AZ: = 0.

proof: Noting the general properties of differentiation from elementary analysis, we will
proceed by direct computation.

(BO\ &) +eX) Zn + B(A,e))\% — B\ )2y + AZy + BN €) d(g” YN
B A\ | droM—9)
= e\ + MW a0

>\0,6

= eNZ\ — eM N ML,
N\ — eMY ML\,
=0.

dZzy

2B e) +eN)Zy + B(Xe)

omep éer Setfan

b) Let us show that S(\, €) = —eX + B(X).

proof: We have demonstrated in part (a) above that (8(\,€) + e\)Zy + ﬁ()\e)/\% = 0.
Dividing this equation by Z, and rearranging terms and expanding in Zy, we obtain

B A dZ
ﬁ(}\,ﬁ)"‘ﬁ)\— ﬂ()\,E)Zi)\W,
- A 1da1 1 dCLQ
=—fxa7 <e @ +>

1 da1 1 dCLQ al
- 5(“»(6 PPN +> (=)

Now, we know that (A, €) must be regular in € as e — 0 and so we may expand it as
a (terminating)? power series 3(\, €) = By + Bie + Bo€® + - - - + Bne™. We notice that
B(A\) = Bo in this notation. Let us consider the limit of € — oc.

For any n > 0, we see that the order of the polynomial on the left hand side has degree
n whereas the polynomial on the left hand side has degree n — 1 because as ¢ — oo,
the equation becomes (§,€" = —ﬁnen)\%%}. But this is a contradiction. ——

Therefore, both the right and left hand sides must have degree less than or equal to O.
Furthermore, because the left hand side is B(\, €) + eA = By + B1€ + e\ must have
degree zero, we see that 31 = —e.

So, expanding (], €) as a power series of €, we obtain,

[ 800 = —ex+ B0

omep éer Setfan

2Professor Larsen does note believe this to be necessary. However, we have been unable to demonstrate the required
identity without assuming a terminating power series.
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. __\2da
c.i) Let us show that 3(\) = A L.

proof: By rewriting the identity obtained from part (a) above and expanding in Z) we see

that
B dZ)
(ﬁ()‘ag) + 6>‘) Z)\ = _5()‘16))‘ )’
ai 1 da;

We see that because there is no term on the right hand side of order €, it must be that
B(X, €) + Aa; = 0 which implies that 3(\,e€) = —Aay. Furthermore, by equating the
coefficients of X, we have in general that 8(X,€)a, + Aani1 = —B(/\,e)/\d;;'. By
rearranging terms and using noticing the chain rule of differentiation, we see that
this implies that

d(Xay)

X dX

This fact will be important to the proof immediately below.
Now, by the result of part (b) above, we know that

A1 = —B(A€) ()\(Mn + an> =—0(\¢€)

dz
BNZy = (B €) + N2y = =B A,
aq o o 1 da1
B (1424 ) = (B ) + N Zn = =B\, A (6 =+ )
Equating the coefficients of terms of order % on the far left and right sides, we see that
da
B(N\ar = —6(>\,e)/\d—/\1.
Now, using our result from before that 3(\, ) = —Aay, we see directly that
dCLl
) Y
LB =) o

‘ % ~
omep €der der€an

c.ii) Let us show that ﬁ()\)% = /\2%.

proof: By our result in part (b) above, we have that
BA) = (B(A€) +€A),

. d(Zy\) d(Z))
1 d(/\al) . 1 d()\al)
B(N) (1+6 5y +> = (B(\,€) +eN) <1+€d)\+~~ .
Equating the coefficients of }V on both sides, we see that by using the identities shown
above,
d(da,) d(Aa,) d(Aay41)
d(la, da,
= B(\,€) (d)\ ) e d;“ + Xy,
B d(Aay) 5 day, 41 d(Aay)
—ﬂ()‘ve) d\ +A d\ _6(A76) d\ )
da,
12 v+1
=A D
So we see in general that
) d(Xa,) | oda,iq
LB EG = 2

omep €deL Setfou
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In the minimal subtraction scheme, we define the mass renormalization by m3 = m?2Z,,, where

Zm:1+zlé—i.
v=1

Similarly, we will define the associated S-function f,,(\) = m~,,(\) which is given by

dm

ﬂm()‘) = Md7M

mo,€

d.i) Let us show that v,,(\) = %%~

2
proof: Because m? is a constant, we know that dmy
we see that this implies
dmi dm dZ,
=0=2Z,m——+m*—"=,
dM Mt T A

g ) L adZn

+m

d\ dZ,,
dZm

2 28m (W) Z = —mB(A€) o

26, () <1+b61+~~) — —mB(\€) (”bl+ >

ed\
28m () <1+b61+...) =—m(B(\) — e\ <1dbl+...

M d\ dM

).

0;

ot = 0. Therefore, writing mé = m?Z,,

We see that the coefficient of the €® term on the left hand side is 23,,(\) and on the
right hand side it is m)\%. Therefore, because these terms must be equal, we see

that A\ db
— 21
Bm(A) =m3 5

) _Adby

d.ii) Let us prove that )\% = 29m (A)by, + B(N) L.
proof: Continuing our work from part (d.i) above, we have that

)

¢ % ~
omep €del der€an

2Bm(N) <1+ % +) =—m (B(\) —€)) <1(jzb/\1 4.
It must be that the coefficients of ei are equal on both sides. Therefore, we see that
2 (Vb = —mB) T+ mATEL,
2mym (A)b, = —mB(\) ‘Z’A” + mAd’;”;l,
2y (Wb = ) G 4 AL

Rearranging terms, we see that

dbysy db,

LA

omep éer Setfan
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APPENDIX

Calculation of the Running Couplings § and \

Let us now solve for the flow of the coupling constants g, \. We have in general that solutions
to the Callan-Symanzik equation will satisfy

dy 3

59

=8, = O(g”).
dlogp/M & 1672 +0(g")
This is an ordinary differential equation. We see that
11 5
—— = ——1 M
37~ 1652 0eP/MHC
and so )
8
.2 — _
9 (p) = 5logp/M + C~

The constant C'is found so that g(p = M) = 1.> This yields C = —1/2.
To find the flow of A\, however, it will be convenient to introduce a new variable n = \/g?. We must

then solve the equation
A By M (3n% — 21 — 48) ¢° e
dlogp/M g2 g3 1672 g

This is again a simple ordinary differential equation. We see that this implies

dn
- dlogp/M.
/3772—277—48 /162 ogp/

Note that from our work above, 167T2dlogp/M 167r2d ( g’gr ) = s—lgdg. Therefore,

/L_/id
32 —2n—48  [5g g

log < — V145 — 1) 2y/145
37+ /145 — 1 5

Solving this equation in terms of 7, we see that we have
Cg2VIT/5 (TI5 — 1) + /115 4 1
3 — 30 g2V145/5 ’

_CgVIE/5 0g2VIES/5\ /145 4 /145

And so,

logg+ C.

ﬁ:

3. 3092\/14 /5 3_ 3092\/14 /5 ’
1 C+92\/14 /5
~ 3 (1 + V145 2\/14 5/5

. C+92\/14o/5

A= 3 <1+\/14 792 )5

As before, the constant term C is found by requiring that A(p = M) = 1. The constant is then

O — _4V/1345+149
- 41 -

31t can be argued that this is a poor choice of C' because it requires the reference scale to be non-perturbative.
Nevertheless, it is not a free parameter.
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Asymptotic Symmetry
Let us consider the theory generated by the Lagrangian,

L= L (060 + Ba)?) - 2 (61 +63) - 22 (6303)

From this Lagrangian we may compute the Feynman rules. We notice that while the ¢} interaction
has a symmetry of 4! to cancel the denominator, there is only a symmetry of 4 associated with the ¢3¢3
vertex and therefore the vertex factor is —i4 - i—f = —i£.

After we have renormalized with canonical renormalization conditions, the Feynman rules are: !

~ . ,
N . ,
~ . s,
=—id e =i/(pP i) W =—ih ——eem =i/ i) " =—ip/3
, - N
s, A ~
N N
N i e
~
= 7i5)\ ———®——— = ip25¢1 \® = 715)\ -—-®-—- = Zp25¢2 = —Z5p/3
e \\\ \\\

Let us now compute the S-functions for the couplings A and p. To do this, we require the renormal-

ization counter-terms dy and d,.
To the one-loop order, we can find §) by computing,

PR X LR

= —iX+ (—iN)? 3 )] — 0y,

= —iA— ()\2 + i) [V (t) 4+ V(s) + V(u)] —idy.

Now, we notice that the integral V (k) is identical in all diagrams. In fact, every one-loop diagram
we will concern ourselves with give the same loop integral V (k). Let us compute the divergent piece of
V (k). Noticing the symmetry factor of % and recalling our early results of dimensional regularization,

dk 1 7
V(k)zi/( 1) (2 4 ie) (0= B2 1 ie)’

:_/dm/ddﬁ 1A)

Lo r(e-9)
- *5 0 (47T)d/2 A2-d/2
i 2 1o A?
~ — - — —
a1 B2r2c | 32n2 SR
Therefore, applying the canonical renormalization conditions, we see that
2

3 A

Because there are no divergent self-energy diagrams in this theory to one-loop order?, we have that
the O-function for A is given precisely by twice the coefficient of the log divergence in dj.

[N+ (p/3)?] . (1.b.1)

O\ =

A= g

INotice that we have used —»—— to represent the field ¢1 and we have used ----»--- to represent the field ¢2.
2Tt is clear that the ¢* interaction does not itself offer any self-energy divergences to one-loop order. Furthermore, we
see that the (;5%(15% interaction’s contribution to self-energy also involves a loop independent of external momentum and
therefore will not diverge.
1
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Similar to our computation above, to find 8, we must compute the renormalization counter-term d,.
To the one-loop order, we can find §, by computing,

S T

We notice that the symmetry factor of 2, included in our evaluation of the function V(k), should
not be included for the penultimate and antepenultlmate diagrams because distinct fields run in the
loop. Therefore, the loop integral for each of those two diagrams will contribute 2V (k) to to the total
amplitude. Noting this subtlety, we find that

il = —i(p/3) + (—iN)(=ip/3) [V (t) + V(1) + (—ip/3)* [2V (u) + 2V (s)] — i, /3.

Recall that we have already computed the divergence of the function V (k) and noted that it was
independent of k. Therefore,

i0p/3 = (—i/\)(—ip/S) V() + V(O] + (—ip/3)* [2V (u) + 2V ()],

A2 i A?

2

log

1 A
S0y = 162 [)\p+2p /3] log

Because there are no divergent self-energy diagrams in this theory to one-loop order, we have that
the B-function for p is given precisely by twice the coeflicient of the log divergence in ¢,.

By = 812 Ao +2p%/3] . (1.b.2)

Let us now consider the S-function associated with the ration A/p. Using the chain rule for differen-
tiation and the definition of the general G-function, we see that

1 1 3)\2;) p3 )\2p p2)\
= — 3N =— _2P_
Prre =22 [Brp = o] 02 | 1602 T 4872 8x2  12n2)°
_ WP o (Vo)
1672 4872 1272
P
= 153 B/ =4(\p) +1],

Brp = e BMp = 1) (Mp—1). (L)

We see immediately that the two roots of (/. occur when \/p = 1,% and because the second
derivative of 3y, is 6 > 0, we know that )/, < 0 for A/p € (%, 1) and B35/, > 0 for A/p > 1. Therefore,
for all \/p > %, A/p will flow to A/p = 1. See Figure 1 below.

Therefore at large distances the couplings will flow to A = p. This introduces a continuous O(2)
P
P2

symmetry into the theory. To see this, let us define ¢ = < > In this notation, the Lagrangian

simply reads

A

_ 1 2 4

2) transformations which correspond to changing the phase

This Lagrangian is clearly invariant to O
of . 2

I

(
/
/
/
/
/
/
/
/

\\\\\\\

NN

0.5 1 1.5 2

FIGURE 1. Renormalization Group Flow as a function of scale. Arrows show p — 0 flow.
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Asymptotic Freedom
Let us consider a theory with a coupling constant g such that

3 3
Bg) = — 2 and  4(g) = -2

1672 © 1672’
for some positive constants (31, 7;.
The renormalized correlation functions satisfy the Callan-Symanzik equations which, for the ampu-
tated correlators, take the form

d 0 n
M+ 80) 55~ 1(0)| T 03, ) =

If we take all the momenta to be equal for simplicity, then the solutions to the Callan-Symanzik equations
take the form

P
T (p/M. g) = T (5(p/M)) exp (—4 /Mdlog(p’/M)v(g(p’;g))) :
Let us compute the running coupling g(p/M). By the Callan-Symanzik equations, we see that
dg Hig® g@ _ B

=" - dlog(p/M
dlog(p/M) 1622 ), 3 167r2/ og(p/M),

1/1 1 3
(A )

(2.b.1)

1+ 2 log(p/M)

Therefore, we see immediately that when p/M — oo, 1 becomes insignificant in the denominator of
g2 and so g becomes independent of g. We see that

) §2 N 872
p—oo (1 log(p/M)’
Furthermore, we notice that this approximation can be trusted because nonperturbative effects become

weaker at higher energy scales in an asymptotically free theory.
Let us now compute the dependence of the four-point vertex on momentum as p/M — oo. We assume

(2..2)

that, to the lowest order, Fg) = g%. We cited the general solution to the (amputated) Callan-Symanzik
equation above. Let us attempt to compute the integral in the exponent which multiplies I'(4) (g)- Using
g from our work above, we see that

P /
Y1 9
dlog p, M — p/; /p 1 / M ’
/JVI ( / ) )(9( 9)) - v Og(p/ )16 2 (] g2 8[37‘-12 10g(p//M))3/2

P

3

812 m —2¢3

 1g? 1672 (1 + g2 21, log(p/ /M))1/2

)

M

__ng

b1
~ 119
p—oo 1

Unfortunately, this result cannot be trusted in general. This is because a very large portion of this
integral came from the lower bound p’ = M as p — oo. The energy scale M is usually chosen to
represent the beginning of the non-perturbative regime in an asymptotically free field theory so our
one-loop estimate of the functions 3(g),v(g) cannot be trusted near p = M.

However, the calculation has taught us an important lesson. Although the precise value of the
integral is largely uncalculable, the form of the solution is predicted. In particular, our evaluation of
the integral showed us that whatever the result will be, it will be a constant, independent of p at large
momenta. Therefore, using our work from above, the general four-point function will be of the form
[(4)geonstant 72 Because we know the behavior of g2 as p/M — oo, we conclude that

1
—1 ,
(1+ g2 42 log(p/M)) /2 ]

. F(4) - 87T2

pooo By log(p/ M) (2e1)
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1. Loop Integrals in Dimensional Regularization
We are to verify the identity

/ddq (d—2n)¢* —dm? 0

)T (g - m2)H]
Noting the results of homework 6 and the elementary properties of the I'-function, we may proceed
directly.

dq (d—2n)q® — dm? (~1)"i dT (n— %) 1 o (—1)" i (n+1— %) 1
Jem o = = G TG G G T G
= T | s e |
_ ((;Tl))dz F(nC:— 5 (mz)}kd 3 (0= d/20(n — d/2) + T(n + 1 - d/2)],
_ <(473>)§Z r(nd+ . (mQ)i_d/Q [-T(n+1—d/2) +T(n+1—d/2)],
=0.

=0. (1L.a)

_/ddq (d —2n)q? — dm?

2m)d (g2 — m2)ntl

omep €deL Setfou

Let us now evaluate the following loop integral,

dq 1
I(p?,m2,m3 :—ieZ/ - —.
() (@) ((a + /27— m T i€)((a — p/2F — 3 119
To evaluate this integral lucidly, let us first introduce the change of variables k = ¢+ p/2. Introducing
the Feynman parameter z, the integral becomes,

/dx/ddk )2—m§+ie)+1(1—x)(k2—m?+i€)}2'

Introducing the variables,

b=k—ap and A=z(z—1Dp* +a2mi + (1 —z)m?,

ddZ
I 2
(p 7m1,m2 0 LE/ A—FZE]Q’
co-g
/x (4 d/2 A2-dj2 |’
0 7T

/M[—mAmeMMH0ﬂ

we see that

d—>4 47T

. 1

2 1
-1222~L/d71 - log(4m)|. 1b
.. (p 7m17m2)d—>4 (471')2 0 €T E + 0og ( 1)p +xm2 (1*(E)m% ’7E+ Og( ﬂ-) ( )

‘. % ~
omep €deL der€an
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The One-Loop Structure of Quantum Electrodynamics

While studying the superficial divergences of quantum electrodynamics, we noted that gauge invariance—
and hence the Ward identity-made several superficially divergent diagrams either converge or vanish.
We are to verify these claims explicitly.

Superficially, the one-point function of the photon has a cubic divergence. Let us demonstrate that
in fact, to the one-loop order, the one-point function of zhe photon vanishes.

To one-loop order, we see that
- O~

The amplitude for the above diagra given by q
d?k i(#+me)
M = (—1)€" T —iey!
= (=1)eu(q) /(%)d ’ [(k? —m2+ ie)( )|,

. d’k T (" +my*)
= _Eu(Q)e/(zm-)d (k2 —m2 +ie)’

__*()4e/ddk ket
=M% U d (R = m2 +de)
0.

Therefore, to one-loop order, Smep e Seitan
Similarly, we argued that although the photon three-point function has a superficial, linear divergence,
its amplitude should also vanish. Let us now demonstrate this fact.
To one-loop order, we see that

Note that the second diagram has been labeled the same as the first diagram but with relative minus
signs on the momenta k. This is because the Feynman propagator has the property that

—E— = M whereas _E_ = m
(k%2 — m2 + ie) (k%2 — m2 +ie)’
Let us consider the evaluation of the first diagram. Its amplitude is proportional to integration over
Tr [y (1 + me)y” #z + me)y” #s +me)] .
Because only those traces over an even number of y-matrices are non-vanishing, this is equal to
Tr [y Jay” B Hs] + m (Tx [y By y*) + Te [y ory®] Te [y ) -
Notice that the only remaining traces involve an odd number of momenta k.
Similarly, we see that the amplitude of the second diagram is proportional to integration over

Tr[(— Hs +me)y” (= Ko +me)y” (= o +me)y™] = =Tr far® Koy Hay]—mg (Tr fayy" ] + Tr [y Moy +*] Tr [vP7" #4"]) -
But, noting identity (5.7) of Peskin and Schroeder, the traces of each expression are equal. Therefore,
the negative contribution from the second diagram cancels the contribution from the first.

Therefore, to one-loop order,
omep é5er Setfaun
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Lastly, our analysis showed that the photon four-point function has a logarithmic, superficial diver-
gence, but by gauge invariance this amplitude is convergent. We are to demonstrate that the photon
four-point function does not diverge to the one-loop order in perturbation theory.

To one-loop order, we see that

I I 111 AV A VI
ARy =PJJ A - p
14 14 14
A Y +
- g . g
ad e [Ches [
(nvopo) (e pvp) (novp) (pvonp) (hvop) (povnp)

Because it is our task to demonstrate that the above amplitude converges-rather than actually com-
pute the amplitude-we may make several helpful simplifications. To illustrate the first major simplifi-
cation, let us analyze the first diagram, (I).

p3 D4
k —
x\’;‘ -3 P ot / d*k Tr [#=ph + me )y F + me)y” (=P + me)y” (= ps— Pa + me)y°]
L I L e @) (k —p)? — m2) (& — m2)((k — pa)? — m2)((k —ps —pa)? —m2)’
ddk Tr Wr}/# k{,yu k///_)/p k’YU] .
= \ = fini rms.
Pl k—p1 € /(271—)d (k2 — m2)4 + te terms

Therefg%e, we see that the divergent part of each diagram is a function of only the order of ~y-matrices
in the trace.

Now, we claim that the divergence of diagram (I) is the same as (II), (III)~(IV), and (V)~(VI). First,
note that the relative change of sign for the loop momentum k& between each pair will not change the
divergence of the diagram because each involves only k* = (—k)*. Secondly, the ordering of the vertices
are precisely reversed for each pair and so by identity (5.7) of Peskin and Schroeder they are equal.
Therefore the total divergence of these six diagrams will be twice that of (I), (III), and (V) alone.

Let us continue to compute the divergence of diagram (I) before illustrating the sum of all six di-
agrams. Because, as we will show, the sum of the diagrams will converge, we will continue without
dimensional regularization.

In our calculation below, we will repeatedly make use of y-matrix algebra proved in homework (in-
cluding that of semester I). Also, note our use of identity (A.42) from Peskin and Schroeder. Let us
begin to evaluate the divergence of diagram (I). The integrand is proportional to

Ty " 1 1) = kakighs ks Te [y09" 977279929

1
qarp ) g a o Tr [y @Ak A BV AV PO o
~>d<d+2)( )* (g B9~vs T Jay9ss + g 5967) r[’y’Y’Y’Y’Y’Y’}/’y},

o Tr[yy*y v vy ] + Trlyv* vy yyPy ¥ + Te[yy " vy 441,
| L

= Tr[(=29" )77 (=27")7y7] + Te[(=2)y" 1"y v 7] + Te[yy* (=29 )"y 77,
= ATr[y4"7Py7] = 2Tx[y" 49" 7] — 2Tx[ 29" y"77],
= 8Tr[y*4"7 7] = 8¢" Tr[y"~7],
=32(g"g"" — 9" g"" + g"?g"") — 329"Pg"7,
x (9" = 29"°9"7 + 9"79"").
Therefore, when we evaluate the amplitude for all six diagrams, the divergent integral will be over

a term proportional to (g gP? — 2gHPg"? + g"? g¥P) together with the analogous terms under the other
two distinct permutations. Therefore, the amplitude’s divergence will be proportional to,

(9" 9”7 —2g""g"" + g"7g"") + (g"" 9" — 29" g™ + g"7g"") + (9" 9”7 — 29" g"" 4 g""*g"7) = 0.

Therefore, the photon’s four-point function is convergent to loop-order in QED. Smep Eber Seau

11t is easier for our purposes to work with d = 4 trace-algebra. Because the total divergence will vanish in d = 4, it
must also vanish in general dimensional regularization.
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The g-function of Quantum Chromodynamics
We are given that, at one-loop order in perturbation theory, the divergent parts of the counter terms

of quantum chromodynamics are
7 92 A2 1 92 A2 2 92 A2
0h=———=log—=, bp=—-"—log— d 03=(5—= ——log —=
LT T um2 P 2T T2 Bz M 3" ) (am)2 %% M2
where the §; are defined in analogy to quantum electrodynamics. We see that these directly imply that
(s 1 g 2 g’
B, =-—""— Aj=-——-—— d A, =[5—-= _Z
97 um2 T Toumy MY A 3" ) am)?

where Ay corresponds to fermion self-energy and Ay corresponds to gluon self-energy.
Let us now compute the S-function for the strong coupling g. This corresponds to the diagram,

Therefore, because 8y = =295, — 2gAr — gAg, we see that

2 g°

In homework 10, we computed the general running coupling constat associated with quantum chro-
modynamics. To relate that result with our work here, we should set the undetermined constant 3; to
(11 - %n f). So from our results of homework 10, we see that the square of the running coupling g is
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We see that the coupling constant will be asymptotically free if 11 > 2/3n;. This is because asymptotic
freedom is directly a result of a negative S-function. It is clear that 8y < 0 only if ny < 33/2 = 16.5.
Also, again by the results of homework 10, we see that at large energy (p/M — o0), the square of the

coupling constant can be approximated by
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