
Physics 523, Quantum Field Theory II
Homework 1

Due Wednesday, 14th January 2004

Jacob Lewis Bourjaily

Bremsstrahlung
a) We showed that in the low energy limit, the amplitude for Bremsstrahlung,

iM̃ =�p

k

p′

+�p

k
p′

= eu(p′)Mo(p′, p)u(p)
(

p′µ

p′ · k −
pµ

p · k
)

ε∗µ, (1.1)

can be written in terms of the amplitude for the process without bremsstrahlung which given in
terms of the relativistically corrected amplitude Mo(p′, p),

�p

p′

= iu(p′)Mo(p′, p)u(p).

We are to verify that (1.1) does indeed vanish when εµ = kµ. This can be easily seen by direct
calculation.

iM̃ = eu(p′)Mo(p′, p)u(p)
(

p′µ

p′ · k −
pµ

p · k
)

kµ,

= eu(p′)Mo(p′, p)u(p)
(

p′µkµ

p′ · k − pµkµ

p · k
)

,

= eu(p′)Mo(p′, p)u(p) (1− 1) ,

∴ iM̃µkµ = 0. (1.2)
‘óπερ ’έδει δε�ιξαι

b) While in the soft photon limit this amplitude is consistent with current conservation, we will
show that it fails in complete generality. To see this, let us consider the full amplitude for the
two diagrams,

iM = eu(p′)
{
Mo(p′, p− k)

6p−6k + m

(p− k)2 −m2
γµε∗µ(k) + γµε∗µ

6p′+6k + m

(p′ + k)2 −m2
Mo(p′ + k, p)

}
u(p). (1.3)

Now, recalling our work with the Dirac equation (and its conjugate) we see that,

(6p + m)γµu(p) = 2pµu(p), and u(p′)γµ(6p′ + m) = u(p′)2p′µ.

Combining this result with simple kinematics for the case where εµ = kµ we have

iM = eu(p′)
{

kµ
2p′µ + γµ6k

2p′ · k Mo(p′ + k, p)−Mo(p′, p− k)
2pµ−6kγµ

2p · k kµ

}
u(p),

= eu(p′)
{

2p′ · k+6k6k
2p′ · k Mo(p′ + k, p)−Mo(p′, p− k)

2p · k−6k6k
2p · k

}
u(p),

= eu(p′) [Mo(p′ + k, p)−Mo(p′, p− k)] u(p),

Now, this result cannot be vanishing for an arbitrary photon energy k. It is certainly the case
that Mo(p′ + k, p) = Mo(p′, p − k) to the order O(1/k) but certainly not in general. We will
have to add an additional diagram to see true current conservation.
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2 JACOB LEWIS BOURJAILY

c) We can improve our estimate of the amplitude to emit a photon by Bremsstrahlung by adding a
third diagram in which the photon is emitted from the ‘gut’ of the reaction with some amplitude
iM3 = eu(p′)ε∗µSµu(p). Adding this diagram, we arrive have

iMtotal =�p

k

p′

+�p

k
p′

+�p

p′ k

= ε∗µ(k)eu(p′)
{

2p′µ + γµ6k
2p′ · k Mo(p′ + k, p)−Mo(p′, p− k)

2pµ−6kγµ

2p · k − Sµ

}
u(p). (1.4)

Therefore, we see that gauge invariance which demands that kµMµ
total = 0 implies that

kµMµ
total = 0 = eu(p′)kµ

{
2p′µ + γµ6k

2p′ · k Mo(p′ + k, p)−Mo(p′, p− k)
2pµ−6kγµ

2p · k − Sµ

}
u(p),

= eu(p′)[Mo(p′ + k, p)−Mo(p′, p− k)− kµSµ]u(p),

Therefore we see at once that gauge invariance implies that

kµSµ = Mo(p′ + k, p)−Mo(p′, p− k). (1.5)

d) Let us expand in derivatives of Mo’s on the right. Doing this, we see that

kµSµ =
∂

∂p′µ
Mo(p′, p)kµ +

∂

∂pµ
Mo(p′, p)kµ. (1.6)

This implies that

Sµ =
(

∂

∂p′µ
+

∂

∂pµ

)
Mo(p′, p) + divergenceless term.

Now, At low energy, all divergenceless terms will go to zero and so our approximation of

Sµ =
(

∂

∂p′µ
+

∂

∂pµ

)
Mo(p′, p), (1.7)

is good to O(1).
Returning to the process of soft Bremsstrahlung, we see that the total amplitude to order

O(1) can be written as

iMtotal = eu(p′)
{

p′µ

p′ · k −
pµ

p · k −
∂

∂p′µ
− ∂

∂pµ

}
ε∗µ(k)Mo(p′, p)u(p). (1.8)



Physics 523, Quantum Field Theory II
Homework 2

Due Wednesday, 21st January 2004

Jacob Lewis Bourjaily

1. Feynman Parametrization
We are to prove Feynman’s Formula,

1
A1 · · ·An

=
∫ 1

0

dx1 · · · dxnδ(n)

(
n∑

i=1

xi − 1

)
(n− 1)!

[x1A1 + · · ·+ xnAn]n
. (1.1)

We will prove this result by induction. First, we will show that

1
A1A2

=
∫ 1

0

dx1dx2δ
(2)(x1 + x2 − 1)

1
[x1A1 + x2A2]2

. (1.2)

This integral can be simplified by using the dirac δ-function so that,
∫ 1

0

dx1dx2δ
(2)(x1 + x2 − 1)

1
[x1A1 + x2A2]2

=
∫ 1

0

dx1
1

[x1A1 + (1− x1)A2]2
. (1.3)

We will solve this integral by making the substitution u ≡ (x1A1+(1−x1)A2) so that du = (A1−A2)dx1.
Substituting u in the integral above and noting the change in the limits of integration we see immediately
that

1
A1A2

=
∫ A1

A2

du

(A1 −A2)
1
u2

=
1

(A1 −A2)

(
− 1

u

)∣∣∣∣
A1

A2

=
1

A1 −A2

(
1

A2
− 1

A1

)
, (1.4)

∴
∫ 1

0

dx1dx2δ
(2)(x1 + x2 − 1)

1
[x1A1 + x2A2]2

=
1

A1A2
. (1.5)

‘óπερ ’έδει δε�ιξαι

Before we complete our proof, let us prove the lemma,

1
A1An

2

=
∫ 1

0

dx1dx2δ
(2)(x1 + x2 − 1)

nxn−1
2

[xaA1 + x2A2]n+1
. (1.6)

This lemma will be proved by induction. We have shown that for n = 1 equation (1.6) holds. Now, let
us suppose that (1.6) is true for some exponent m ≥ 1. We must show that this implies that (1.6) is
satisfied for m + 1. So our induction hypothesis is given by

1
A1Am

2

=
∫ 1

0

dx1dx2δ
(2)(x1 + x2 − 1)

mxm−1
2

[xaA1 + x2A2]m+1
. (1.7)

Let us differentiate both side of equation (1.7) with respect to A2. This becomes

−m
1

A1A
m+1
2

= −
∫

dx1dx2δ
(2)(x1 + x2 − 1)

m(m + 1)xm−1
2 x2

[x1A1 + x2A2]m+2
,

(1.8)

∴ 1
A1A

m+1
2

=
∫

dx1dx2δ
(2)(x1 + x2 − 1)

(m + 1)xm
2

[x1A1 + x2A2]m+2
. (1.9)

‘óπερ ’έδει δε�ιξαι

Now we are ready to complete the entire proof. Because we have shown that Feynman’s formula is
true for 1

A1A2
, we may prove by induction to 1

A1···An
. Let us assume therefore that Feynman’s formula

is valid for some n = m ≥ 2. We must show that it is valid for m + 1.

1
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We will begin this proof by direct calculation. For this derivation, we will use the following notational
conveniences:

U ≡ (x1A1 + · · ·+ xnAm), ui ≡ (1− um+1)xi, dui ≡ (1− xm+1)dxi for i ∈ [1,m].

Note that um+1 is an ordinary integration variable and is not set by the above. By our induction
hypothesis, we have that

1
A1 · · ·Am

=
∫ 1

0

dx1 · · · dxmδ(m)

(
m∑

i=1

xi − 1

)
(m− 1)!

[x1A1 + · · ·+ xmAm]m
.

We also note the property of the Dirac δ-functional that δ(f(x)/a) = aδ(f(x)). Now, let us make the
following calculation

1
A1 · · ·Am+1

=
1

Am+1

1
A1 · · ·Am

,

=
1

Am+1

∫ 1

0

dx1 · · · dxmδ

(
m∑

i=1

xi − 1

)
(m− 1)!

[x1A1 + · · ·+ xmAm]m
,

=
∫ 1

0

dx1 · · · dxmδ

(
m∑

i=1

xi − 1

)
(m− 1)!

1
U m

1
Am+1

,

=
∫ 1

0

dx1 · · · dxmδ

(
m∑

i=1

xi − 1

)
(m− 1)!

∫ 1

0

dum+1
m(1− um+1)m−1

[(1− um−1)U + um+1Am+1]m+1
,

=
∫ 1−um+1

0

du1 · · · dumδ

(
m∑

i=1

xi − 1

)
m!

(1− xm+1)m

∫ 1

0

dum+1
(1− um+1)m−1

[u1A1 + · · ·+ umAm + um+1Am+1]m+1
,

=
∫ 1

0

dum+1

∫ 1−um+1

0

du1 · · · dumδ

(
m∑

i=1

ui

(1− um+1)
− 1

)
m!

(1− um+1)[u1A1 + · · ·+ um+1Am+1]m+1
,

=
∫ 1

0

dum+1

∫ 1−um+1

0

du1 · · · dumδ

(
m+1∑

i=1

ui − 1

)
m!

[u1A1 + · · ·+ um+1Am+1]m+1
.

We note that because of the δ-functional within the integral (and because um+1 is always positive),
when the domain of the interior integral is extended to 1 the integral will not pick up any additional
contribution. So we may put the integral above into a more symmetric form,

1
A1 · · ·Am+1

=
∫ 1

0

du1 · · · dum+1δ

(
m+1∑

i=1

ui − 1

)
m!

[u1A1 + · · ·+ um+1Am+1]m+1
. (1.10)

Therefore, by induction on m we see that for all values n ≥ 2,

1
A1 · · ·An

=
∫ 1

0

dx1 · · · dxnδ(n)

(
n∑

i=1

xi − 1

)
(n− 1)!

[x1A1 + · · ·+ xnAn]n
. (1.11)

‘óπερ ’έδει δε�ιξαι

2. Loop Integrals

a) We are to demonstrate that
∫

d4`

(2π)4
1

[`2 −∆]m
=

i(−1)m

(4π)2
1

(m− 1)(m− 2)
1

∆m−2
for m > 2.

To compute this integral, we will first note that the two poles, at ` = ±√∆, are covered
by the same contour in the complex `0 plane when the contour is analytically extended to the
imaginary axis. Therefore, without loss of generality, we may make the substitution ` = i`E .
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Doing this, we may compute directly. Note the substitution u ≡ `2E +∆ in the fifth line. Also
notice that the derivation is only valid for m > 2 because the integral will diverge for m ≤ 2.

∫
d4`

(2π)4
1

[`2 −∆]m
=

i

(2π)4

∫
d4`E

1
[−`2E −∆]m

,

=
i(−1)m

(2π)4

∫
d4`E

1
[`2E + ∆]m

,

=
i(−1)m

(2π)4

∫
dΩ4

∫ ∞

0

d`E
`3E

[`2E + ∆]m
,

=
2i(−1)m

(4π)2

∫ ∞

0

d`E
`3E

[`2E + ∆]m
,

=
2i(−1)m

(4π)2

∫ ∞

∆

du

2`E

`3E
um

,

=
i(−1)m

(4π)2

∫ ∞

∆

du
u−∆
um

,

=
i(−1)m

(4π)2

(
1

(m− 1)
∆

um−1
− 1

(m− 2)
1

um−2

)∣∣∣∣
∞

∆

,

=
i(−1)m

(4π)2

(
1

(m− 2)
1

∆m−2
− 1

(m− 1)
1

∆m−2

)
,

∴
∫

d4`

(2π)4
1

[`2 −∆]m
=

i(−1)m

(4π)2
1

(m− 1)(m− 2)
1

∆m−2
for m > 2. (2.1)

‘óπερ ’έδει δε�ιξαι

b) We are to demonstrate that
∫

d4`

(2π)4
`2

[`2 −∆]m
=

i(−1)m−1

(4π)2
2

(m− 1)(m− 2)(m− 3)
1

∆m−3
for m > 3.

To prove this equality we will proceed similarly to part (a) above. Like before, we note that
the two residues, at ` = ±√∆, are covered by the same branch cut in the complex plane when
the contour integral is analytically continued to the imaginary axis. Therefore, we will make
the substitution ` = i`E . When computing the integral explicitly below, note the substitution
u ≡ `2E + ∆. Also, notice that for m ≤ 3 the integral will diverge. We will proceed directly.

∫
d4`

(2π)4
`2

[`2 −∆]m
=

i

(2π)4

∫
d4`E

−`2E
[−`2E −∆]m

,

=
i(−1)m−1

(2π)4

∫
dΩ4

∫ ∞

0

d`E
`5E

[`2E + ∆]m
,

=
2i(−1)m−1

(4π)2

∫ ∞

∆

du

2`E

`5E
um

,

=
i(−1)m−1

(4π)2

∫ ∞

∆

du
`4E
um

,

=
i(−1)m−1

(4π)2

∫ ∞

∆

du
(u2 − 2∆u + ∆2)

um
,

=
i(−1)m−1

(4π)2

(
− 1

(m− 3)
1

um−3
+

1
(m− 2)

2∆
um−2

− 1
(m− 1)

∆2

um−1

)∣∣∣∣
∞

∆

,

=
i(−1)m−1

(4π)2
1

∆m−3

(
1

(m− 3)
− 2

(m− 2)
+

1
(m− 1)

)
,

∴
∫

d4`

(2π)4
`2

[`2 −∆]m
=

i(−1)m−1

(4π)2
2

(m− 1)(m− 2)(m− 3)
1

∆m−3
for m > 3. (2.2)

‘óπερ ’έδει δε�ιξαι
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c) Let us prove the identity
∫

d4`

(2π)4

(
`2

[`2 −∆]3
− `2

[`2 −∆Λ]3

)
=

i

(4π)2
ln

(
∆Λ

∆

)
.

To prove this identity we will differentiate both sides with respect to ∆. Doing this, the right
hand side trivially becomes (noting the definition of ∆Λ),

∂

∂∆

{
i

(4π)2
ln

(
∆Λ

∆

)}
=

i

(4π)2
∆
∆Λ

(
−zΛ2

∆2

)
=

i

(4π)2
−zΛ2

∆Λ∆
. (2.3)

Differentiating the left hand side and using equation (2.2) we see that,

∂

∂∆

{∫
d4`

(2π)4

(
`2

[`2 −∆]3
− `2

[`2 −∆Λ]3

)}
= 3

∫
d4`

(2π)4

(
`2

[`2 −∆]4
− `2

[`2 −∆Λ]4

)
,

= 3
i(−1)3 · 2

(4π)2(3 · 2 · 1)

(
1
∆
− 1

∆Λ

)
,

=
i

(4π)2

(
1

∆Λ
− 1

∆

)
,

=
i

(4π)2

(
∆−∆Λ

∆Λ∆

)
,

=
i

(4π)2
−zΛ2

∆Λ∆
,

Therefore the derivatives of each sides of the desired identity with respect to ∆ are equal. We
note that, by direct calculation, the constant of integration is zero.

∴
∫

d4`

(2π)4

(
`2

[`2 −∆]3
− `2

[`2 −∆Λ]3

)
=

i

(4π)2
ln

(
∆Λ

∆

)
. (2.4)

‘óπερ ’έδει δε�ιξαι

3. The Volume Element in D-Dimensions
a) We note that evaluating the trivial Gaussian integral yields

I =
∫ ∞

−∞
dx e−x2

=
√

π. (3.1)

b) Let us compute the general Gaussian integral,

In =
∫ ∞

−∞
dx1 · · · dxn e−(x2

1+···+x2
n).

We note that a general procedure for computing such Gaussian integrals is to convert it into an
integral over spherical coordinates. Let us compute In directly this way. When needed, we will
define the substitution variable u ≡ r2.

In =
∫

dΩn−1

∫ ∞

0

dr rn−1e−r2
,

=
∫

dΩn−1

∫ ∞

0

du

2r
rn−1e−u,

=
∫

dΩn−1
1
2

∫ ∞

0

du u(n−2)/2e−u,

=
1
2
Γ(n/2)Ωn−1,

c) Using our result above we see that π(D/2) = ΩD−11/2Γ(D/2). Therefore it is clear that

ΩD−1 =
2πD/2

Γ(D/2)
. (3.2)

d) Therefore by part (c) we see immediately that

Ω1 = 2π, Ω2 = 4π, Ω3 = 2π2, Ω4 =
8
3
π2. (3.3)
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4. The Electron Vertex Function
We are to completely simplify the numerator of the integrand of the electron vertex function’s first

order correction written as

N ≡ u(p′)
[ 6kγµ 6k′ + m2γµ − 2m(k + k′)µ

]
u(p). (4.1)

In part to accomplish this task we will make the substitution

` ≡ k + yq − zp.

During the following exercise in algebra, we will often make use of the Dirac equation which can be
written as

u(p′) 6p′ = u(p′)m, 6pu(p) = mu(p), u(p′) 6qu(p) = 0, (4.2)
and we will frequently imply the use of the Dirac equation to set 6p → m,6p′ → m, or 6q → 0 by implying
contraction with a spinor outside the square brackets. This of course can only be done when the specific
momentum 4-vector is appropriately located (without γµ’s between it and the needed spinor(s)). Also,
we will make use of the facts derived in class that when this integral is evaluated, all terms linear in `ν

will give no contribution and rotational symmetry allows us to set `µ`µ → 1
4gµν`2.1

Let us begin our calculation by direct substitution (making use of the stated identity to throw out
terms linear in `ν).

N = u(p′)


6`γµ 6`︸ ︷︷ ︸

i

−y(1− y)6qγµ 6q︸ ︷︷ ︸
ii

−zy 6qγµ 6p︸ ︷︷ ︸
iii

+z(1− y) 6pγµ 6q︸ ︷︷ ︸
iv

+z2 6pγµ 6p︸ ︷︷ ︸
v

+m2γµ − 2m(1− 2y)q − 4mzp


 u(p).

We will evaluate this in parts.
i. 2 6`γµ 6` = 2 6``−6` 2γµ =

1
2
gµνγν`2 − `2γµ = −1

2
`2γµ.

ii. 6qγµ 6q = 2 6qq︸︷︷︸
→0

−6q2γµ = −q2γµ.

iii. 6qγµ 6p =6qγµm = m 6p′γµ −m 6pγµ = m2γµ − 2mpµ + m2γµ = 2m2γµ − 2mpµ.

iv. 6pγµ 6q = 2p 6q︸︷︷︸
→0

−γµ 6p 6q = −2γµp · q + mγµ 6q = −γµ2p · q + mγµ 6p′ −m2γµ,

= −γµ2p · q + 2mp′µ − 2m2γµ.

Notice, however, that

2p · q = p · q + p · q = p · q + p′ · q − q2 = p′2 + p′ · p− p′ · p− p2 − q2 = m2 −m2 − q2 = −q2.

Therefore,
6pγµ 6q = γµq2 + mp′µ − 2m2γµ.

v. 6pγµ 6p = m 6pγµ = 2mpµ −m2γµ.

Combining all of these results, we may write the numerator as

N = u(p′)


γµ

A︷ ︸︸ ︷(
−1

2
`2 + y(1− y)q2 + z(1− y)q2 − 2m2yz − 2m2z(1− y)− z2m2 + m2

)
,

+ 2myzpµ + 2mz(1− y)p′µ + 2mz2pµ − 2m(1− 2y)qµ − 4mzpµ

︸ ︷︷ ︸
B


 u(p).

1It is important to note that we do not imply that `µ`ν = 1
4
gµν`2 or that `ν = 0 but rather that these are symmetries

of the integrand.
2Here and later in the derivation we make use of the identity 6p2 = p2. This is seen by simple γ algebra:

6p2 = pνγνγµpµ = 2p2 − pµγµγνpν = 2p2−6p2. So 2 6p2 = 2p2 =⇒ 6p2 = p2.
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Let us simplify the parts A and B separately. To do this, we will make repeated use of the fact that
x + y + z = 1 by the Dirac δ-functional of these Feynman parameters. Let us begin with part A .

A = −1
2
`2 + q2 (y(1− y) + z(1− y)) + m2

(−2yz − 2z(1− y)− z2 + 1
)
,

= −1
2
`2 + q2 ((1− x− z)(1− z) + z(1− y)) + m2 (−2yz − 2z + 2yz + 1) ,

= −1
2
`2 + q2(1− x)(1− y) + m2(1− 2z − z2).

Now let us simplify part B. This process will not seem beautiful or elegant, but in the words of
Pascal, “I apologize for this [derivation’s] length for I did not have time to make it short.”

B = 2myzpµ + 2mz(1− y)p′µ + 2mz2pµ − 2m(1− 2y)qµ − 4mzpµ,

= 2m
(
yzpµ + zp′µ − zyp′µ + z2pµ − qµ + 2yqµ − 2zpµ

)
,

= 2m
(
z(z − 1)pµ − zpµ + zp′µ − zp′µ + zxp′µ + z2p′µ − qµ + 2yqµ + yzpµ

)
,

= 2m (z(z − 1)(pµ + p′µ) + zqµ + zxp′µ − qµ + 2yqµ + yzpµ) ,

= m
(
z(z − 1)(pµ + p′µ) + z2pµ − zpµ + z2p′µ − zp′µ + 2zp′µ − 2zyp′µ − 2z2p′µ

+2zpµ − 2xzpµ − 2z2p′µ + 4yqµ + 2zqµ − 2qµ
)
,

= m
(
z(z − 1)(pµ + p′µ)− z2pµ + zpµ − z2p′µ + zp′µ − 2zyp′µ − 2xzpµ + 4yqµ + 2zqµ − 2qµ

)
,

= m (z(z − 1)(pµ + p′µ)− zpµ + zxpµ + zypµ + zpµ − zp′µ + zxp′µ + ztp′µ + zp′µ − 2zyp′µ

−2zxpµ + 4ypµ + 2zp′µ − 2zpµ − 2p′µ + 2pµ) ,

= m (z(z − 1)(pµ + p′µ)− zyp′µ + zxp′µ − zxpµ + zypµ + 2yp′µ − 2ypµ + 2p′µ − 2xp′µ − 2zp′µ

−2pµ + 2xpµ + 2zpµ + 2zp′µ − 2zpµ − 2p′µ + 2pµ) ,

= m (z(z − 1)(pµ + p′µ) + (p′µ − pµ)(zx− zy + 2y − 2x)) ,

= mz(z − 1)(pµ + p′µ) + mqµ(z − 2)(x− y).

When we combine these simplifications into the entire expression for the numerator, we see that

∴ N = u(p′)
[
γµ

(
−1

2
`2 + (1− x)(1− y)q2 + m2(1− 2z − z2)

)
+ mz(z − 1) (p′µ + pµ) + m(z − 2)(x− y)qµ

]
.

‘óπερ ’έδει δε�ιξαι



Physics 523, Quantum Field Theory II
Homework 3

Due Wednesday, 28st January 2004

Jacob Lewis Bourjaily

The Rosenbluth Formula
We are to prove the Rosenbluth Formula by considering the elastic scattering of a relativistic electron

off of a proton while correcting the vertex function of the proton. The amplitude for this process is,

iM =�p k

p′

←−q
k′

p+ e−

= u(k′)(−ieγµ)u(k)−i
q2 u(p′)(−ieΓµ)u(p).

a) Let us simplify the amplitude using the Gordon identity. Recall that we showed in class that
the generalized vertex function Γµ may be written in terms of functions F1(q2) and F2(q2) as

Γµ = γµF1(q2) +
iσµνqν

2m
F2(q2).

Inserting this into the amplitude and recalling the Gordon identity, we see that

iM = i
e2

q2
u(k′)γµu(k)u(p′)Γµu(p),

= i
e2

q2
u(k′)γµu(k)u(p′)

(
γµF1 +

iσµνqν

2m
F2

)
u(p),

= i
e2

q2
u(k′)γµu(k)u(p′)

(
γµF1 +

iσµνqν

2m
F2 +

(p′ + p)µ

2m
F2 − (p′ + p)µ

2m
F2

)
u(p),

= i
e2

q2
u(k′)γµu(k)u(p′)

(
γµ(F1 + F2)− (p′ + p)µ

2m
F2

)
u(p),

∴ Γµ = γµ(F1 + F2)− (p′ + p)µ

2m
F2.

b) Let us compute the spin-averaged amplitude squared directly. We see that

|M |2 =
e4

4q4

∑

spin

u(k′)γµu(k)u(p′)
(

γµ(F1 + F2)− (p′ + p)µ

2m
F2

)
u(p)u(p)

(
γν(F1 + F2)− (p′ + p)ν

2m
F2

)
u(p′)u(k)γνu(k′),

=
e4

4q4
Tr [(6k′ + me)γµ(6k + me)γν ]×
{

(F1 + F2)2Tr [(6p′ + m)γµ(6p + m)γν ]− F2(F1 + F2)
(p′ + p)ν

2m
Tr [(6p′ + m)γµ(6p + m)]

−F2(F1 + F2)
(p′ + p)µ

2m
Tr [(6p′ + m)(6p + m)γν ] + F 2

2

(p′ + p)µ(p′ + p)ν

4m2
Tr [(6p′ + m)(6p + m)]

}
,

=
4e4

q4

(
k′µkν + k′νkµ − gµν(k′ · k −m2

e)
)×

{
(F1 + F2)2

(
p′µpν + p′νpµ − gµν(p′ · p−m2)

)− F2(F1 + F2)(p′ + p)µ(p′ + p)ν

+
F 2

2

4m2
(p′ + p)µ(p′ + p)ν(p′ · p + m2)

}
,

=
4e4

q4

(
k′µkν + k′νkµ − gµν(k′ · k −m2

e)
)×

{
(F1 + F2)2

(
p′µpν + p′νpµ − gµν(p′ · p−m2)

)
+ (p′ + p)µ(p′ + p)ν

(
p′ · p + m2

4m2
F 2

2 − F2(F1 + F2)
)}

,

∴ |M |2 =
8e4

q4

[
(F1 + F2)2

(
k′ · p′k · p + k′ · pk · p− k′ · km2 − p′ · pm2

e + 2m2m2
e

)

+
(

p′ · p + m2

4m2
F 2

2 − F2(F1 + F2)
)(

k′ · (p′ + p)k · (p′ + p)− 1
2
(k′ · k −m2

e)(p
′ + p)2

)]
.

1
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c) Let us consider the kinematics of this reaction in the initial rest frame of the proton. In this
frame we see that p = (m,~0), k = (E, Eẑ), k′ = (E′, ~k′), p′ = (E − E′ + m,−~k) with |~k′| = E′.
We have defined the momentum transfer q such that p′ − p = q = k − k′.

Noting that p · p′ = m2 + Em− E′m, let us compute p′2.

p′2 = (p+q)2 = p2+2p ·q+q2 = m2+2p ·(p′−p)+q2 = −m2+2p′ ·p+q2 = m2+2Em−2E′m+q2 = m2,

=⇒ q2 = 2E′m− 2Em,

∴ E′ = E +
q2

2m
.

If we write k′ = (E′, 0, E′ sin θ, cos θ) so that q = (E − E′, 0,−E′ sin θ,E − E′ cos θ) we see

q2 = E′2−2EE′+E2−E′2−E′2 sin2 θ−E2 +2EE′ cos θ−E′2 cos2 θ = 2EE′(cos θ−1) = −4EE′ sin2 θ

2
.

Using our identity derived above that E′ = E + q2

2m , we may conclude that

q2 = −4E2 sin2 θ

2
− q2

2m
4E sin2 θ

2
,

∴ q2 = − 4E2 sin2 θ
2

1 + 2E
m sin2 θ

2

.

Let us now compute all of the required inner products to compute the desired amplitude
squared. Noting that p2 = p′2 = m2, k2 = k′2 = 0, and p · k = Em we may derive all of our
necessary identities and inner products indirectly (it’s more fun that way). We notice that

p′2 = m2 = p2 + 2p · q + q2 = −m2 + 2p′ · p + q2,

∴ p′ · p = m2 − q2

2
.

Similarly,
p′2 = m2 = p2 + 2p · q + q2 = m2 + 2p · k − 2p · k′ + q2,

but we know that p · k = Em,

∴ p · k′ = Em +
q2

2
.

Likewise,
k′2 = 0 = k2 − 2k · q + q2 = 2k · k′ + q2 = 0,

∴ k′ · k = −q2

2
.

And
k′2 = 0 = k2 − 2k · q + q2 = −2k · p′ + 2k · p + q2,

where we know that k · p = Em and

∴ k · p′ = Em +
q2

2
.

Similarly,
k2 = 0 = k′2 + 2q · k′ + q2 = 2p′ · k′ + q2,

∴ p′ · k′ = Em.

Tabulating our results, we have shown that

k′ · k = −q2

2
p′ · p = m2 − q2

2
k′ · p = Em +

q2

2

p′ · k = Em +
q2

2
k′ · p′ = Em p · k = Em.

These imply that

k · (p′ + p) = 2Em +
q2

2
, k′ · (p′ + p) = 2Em +

q2

2
, and (p + p′)2 = 4m2 − q2.
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d) We are to use the kinematic information derived in part (c) above to rewrite the spin-averaged
amplitude squared into a more convenient form. Recall that

|M |2 =
8e4

q4

[
(F1 + F2)2

i︷ ︸︸ ︷(
k′ · p′k · p + k′ · pk · p− k′ · km2 − p′ · pm2

e + 2m2m2
e

)

+
(

p′ · p + m2

4m2
F 2

2 − F2(F1 + F2)
)

︸ ︷︷ ︸
ii

(
k′ · (p′ + p)k · (p′ + p)− 1

2
(k′ · k −m2

e)(p
′ + p)2

)

︸ ︷︷ ︸
iii

]
.

We note that in the approximation where k2 ∼ 0, we should set me → 0. Let us compute each
part separately first before combining the results.

i. (k′ · p′)(k · p) + (k′ · p)(k · p′)− (k′ · k)m2 = (Em)2 + (Em)2 + Emq2 +
q4

4
+

q2

2
m2.

ii. p′ · p + m2

4m2
F 2

s − F1F2 − F 2
2 =

1
2
F 2

2 −
q2

8m2
F 2

2 − F1F2 − F 2
2 ,

= −1
2

[
(F 2

2 + 2F1F2 + F 2
1 − F 2

1 +
q2

4m2
F 2

2

]
,

= −1
2

[
((F1 + F2)2 −

(
F 2

1 −
q2

4m2
F 2

2

)]
.

iii. (k′ · (p′ + p))(k · (p′ + p))− 1
2
(k′ · k)(p′ + p)2 = 4(Em)2 + 2Emq2 +

q4

4
+ q2m2 − q4

4
.

Combining these results, we see that the coefficient for the (F1 + F2)2 term will be

2(Em)2 + Emq2 +
q4

4
+

q2

2
m2 − 2(Em)2 − Emq2 − q2

2
m2 =

q4

4
,

which can be written,
q4

4
=

q2

2
q2

2
= − 2E2m2

1 + 2E
m sin2 θ

2

q2

2m2
.

Similarly, we will combine the results above to compute the coefficient for the (F 2
1 − q2

4m2 F 2
2 )

term.

2(Em)2 + Emq2 +
q2

2
m2 = 2E2m2 − 4E3m sin2 θ

2

1 + 2E
m sin2 θ

2

− 2E2m2 sin2 θ
2

1 + 2E
m sin2 θ

2

,

=
2E2m2 + 4E3m sin2 θ

2 − 4E3m sin2 θ
2 − 2m2E2 sin2 θ

2

1 + 2E
m sin2 θ

2

,

= 2E2m2 1− sin2 θ
2

1 + 2E
m sin2 θ

2

=
2E2m2 cos2 θ

2

1 + 2E
m sin2 θ

2

.

Therefore, combining all of these results, the total spin-average amplitude squared becomes

|M |2 =
16e4E2m2

q4
(
1 + 2E

m sin2 θ
2

)
[(

F 2
1 −

q2

4m2
F 2

2

)
cos2

θ

2
− q2

2m2
(F1 + F2)2 sin2 θ

2

]
.

‘óπερ ’έδει δε�ιξαι
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e) Let us compute the differential cross section, dσ
d cos θ

∣∣
lab

. To do this, we will compute the cross
section in most general terms. From elementary considerations, we calculated that

dσ =
1

2EA2EB|vA − vB|


∏

f

d3pf

(2π)3
1

2Ef


 |M |2(2π)4δ(4)

(
pA + pB −

∑
pf

)
,

=
1

4mE
|M |2 d3p′d3k′

(2π)2
1

4E′E′
p

δ(4)(p + k − p′ − k′).

We see that this is so because EA = m, EB = E, |vA − vB| = 1 and there are two final states.
Let us now integrate over dσ to find its dependence on cos θ. During the derivation, we will

make use of the fact that E+m = E′
p+E′ by energy conservation enforced by the dirac δ function.

We will also call upon our results above to use the identities E′ = E + q2

2m and q2 = 4E2 sin2 θ
2

1+ 2E
m sin2 θ

2
.

Notice the insertion of the Jacobian for the change of variables to integrate over the energy
portion of the δ function in line 4. We will now proceed directly by first integrating over the p′

part of the integral.

σ =
∫

dσ =
1

4mE
|M |2

∫
d3p′d3k′

(2π)2
1

4E′E′
p

δ(4)(p + k − p′ − k′),

=
1

4mE
|M |2

∫
d3k′

(2π)2
1

4E′E′
p

δ(1)
(
E′ − E −m +

√
m2 + E2 + E′2 − 2EE′ cos θ

)
,

=
1

4mE
|M |2

∫
E′2dEdΩ

(2π)2
1

4E′E′
p

δ(1)
(
E′ − E −m +

√
m2 + E2 + E′2 − 2EE′ cos θ

)
,

=
1

4mE
|M |2

∫
dΩ

(2π)2
E′

4E′
p

(
1 +

E′ − E cos θ

E′
p

)−1

,

=
1

4mE
|M |2

∫
dΩ

(2π)2
E′

4E′
p

(
E′

p

E′
p + E′ − E cos θ

)
,

=
1

4mE
|M |2

∫
d cos θ

(2π)
E′

4E′
p

(
E′

p

E′
p + E′ − E cos θ

)
,

=
1

32πmE
|M |2

∫
d cos θ

E′

m + E(1− cos θ)
,

=
1

32πm2E
|M |2

∫
d cos θ

E′

1 + 2E
m sin2 θ

2

,

=
1

32πm2E
|M |2

∫
d cos θ

E + q2

2m

1 + 2E
m sin2 θ

2

,

=
1

32πm2E
|M |2

∫
d cos θ

E − 2E2 sin2 θ
2

m(1+ 2E
m sin2 θ

2 )

1 + 2E
m sin2 θ

2

,

=
1

32πm2E
|M |2

∫
d cos θ

E + 2E2

m sin2 θ
2 − 2E2

m sin2 θ
2

(1 + 2E
m sin2 θ

2 )2
,

=
1

32πm2E
|M |2

∫
d cos θ

E

(1 + 2E
m sin2 θ

2 )2
,

=
1

32πm2(1 + 2E
m sin2 θ

2 )2
|M |2

∫
d cos θ,

=
1

32πm2(1 + 2E
m sin2 θ

2 )2
|M |2 cos θ,

∴ dσ

d cos θ

∣∣∣∣
lab

=
1

32πm2
(
1 + 2E

m sin2 θ
2

)2 |M |2.

‘óπερ ’έδει δε�ιξαι
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f) We will now derive the Rosenbluth formula. From our work above, we see that

dσ

d cos θ

∣∣∣∣
lab

=
16e4E2m2

[(
F 2

1 − q2

4m2 F 2
2

)
cos2 θ

2 − q2

2m2 (F1 + F2)2 sin2 θ
2

]

32πm2
(
1 + 2E

m sin2 θ
2

)2
q4

(
1 + 2E

m sin2 θ
2

) ,

=
e4E2

[(
F 2

1 − q2

4m2 F 2
2

)
cos2 θ

2 − q2

2m2 (F1 + F2)2 sin2 θ
2

]

2π
16E4 sin4 θ

2

(1+ 2E
m sin2 θ

2 )
2

(
1 + 2E

m sin2 θ
2

)2 (
1 + 2E

m sin2 θ
2

) ,

=
e4

[(
F 2

1 − q2

4m2 F 2
2

)
cos2 θ

2 − q2

2m2 (F1 + F2)2 sin2 θ
2

]

32πE2 sin4 θ
2

(
1 + 2E

m sin2 θ
2

) ,

∴ dσ

d cos θ

∣∣∣∣
lab

=
πα2

[(
F 2

1 − q2

4m2 F 2
2

)
cos2 θ

2 − q2

2m2 (F1 + F2)2 sin2 θ
2

]

2E2 sin4 θ
2

(
1 + 2E

m sin2 θ
2

) .

‘óπερ ’έδει δε�ιξαι



Physics 523, Quantum Field Theory II
Homework 4

Due Wednesday, 4th February 2004

Jacob Lewis Bourjaily

The Anomalous Magnetic Moments of e− and µ−

We are to investigate the possible contributions of scalar loops to the QED anomalous magnetic
moments of the electron and muon. First we will consider contributions from a Higgs particle, h. We
casually note that because the interaction Hamiltonian is given by,

Hint =
∫

dx λ√
2
hψψ,

our vertex rule is

�
h

= −i λ√
2
.

Therefore, we may now compute the amplitude for the following interaction.

iM =�p k

p− k

k′ = k + q

←−q

p′

e−

=
∫

d4k
(2π)4 u(p′)−iλ√

2
i

((p−k)2−m2
h+iε)

i(6 k′+m)
(k′2−m2+iε) (−ieγµ) i(6 k+m)

(k2−m2+iε)
−iλ√

2
u(p),

∴ iM =
eλ2

2

∫
d4k

(2π)4
u(p′) [(6k′ + m)γµ(6k + m)] u(p)

(k2 −m2 + iε)(k′2 −m2 + iε)((p− k)2 −m2
h + iε)

. (a.2)

Let us now simplify the denominator using Feynman parametrization. Using the same procedure as
before, we see that we may reduce the denominator to the form,

1
(k2 −m2

e + iε)(k′2 −m2
e + iε)((p− k)2 −m2

h + iε)
,

=
∫

dxdydzδ(3)(x + y + z − 1)
2

[xk2 + yk2 + zk2 + 2yqk + yq2 + zp2 − 2zpk − xm2 − ym2 − zm2
h + (x + y + z)iε]3

,

=
∫

dxdydzδ(3)(x + y + z − 1)
2

[k2 + 2k(yq − zp) + yq2 + zp2 − (1− z)m2 − zm2
h + iε]3

,

Introducing the terms,

` ≡ k + yq − zp and ∆ = −xyq2 + (1− z)2m2 + zm2
h,

we see that the denominator becomes,
∫

dxdydzδ(3)(x + y + z − 1)
2

[`2 −∆ + iε]3
(a.3)

We are now ready to simplify the numerator of the integrand using the parameters ` for equation (a.2)
above. There are arguably more elegant ways to go about this calculation, but we will simplify by brute
force. We will use, without repeated demonstration, several identities that were shown in homework 2.
Specifically, we will expand the integrand with the knowledge that all terms linear in ` will integrate to
zero and so may be ignored. Furthermore, we are only interested in terms that do not involve a γµ so in
the below tabulation of results from the Dirac algebra, we will simply write 6qγµ → −2pµ with knowledge

1
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that 6qγµ = 2mγµ − 2pµ because we are uninterested in terms proportional to γµ.
We will begin our simplification with a full expansion of the numerator as follows:

N = u(p′) [(6k′ + m)γµ(6k + m)] ,

= u(p′)
[6k′γµ 6k + m 6k′γµ + mγµ 6k + m2γµ

]
u(p),

→ u(p′)
[
6`γµ 6`︸ ︷︷ ︸

i

−y(1− y)6qγµ 6q︸ ︷︷ ︸
ii

+z(1− y) 6qγµ 6p︸ ︷︷ ︸
iii

−zy 6pγµ 6q︸ ︷︷ ︸
iv

+z2 6pγµ 6p︸ ︷︷ ︸
v

+m2γµ

+ m(1− y) 6qγµ

︸︷︷︸
vi

+mz 6pγµ

︸︷︷︸
vii

−my γµ 6q︸︷︷︸
viii

+mz γµ 6p︸︷︷︸
ix

]
u(p).

Using Dirac algebra and our results from homework 2, we see that

(i) → 0, (ii) → 0, (iii) → −2mpµ,

(iv) → 2mpµ, (v) → 2mpµ, (vi) → −2pµ,

(vii) → 2pµ, (viii) → 2p′µ, (xi) → 0.

Using this result (which ignores all terms linear in ` and γµ), we see that

N → u(p′)
[
− 2mz(1− y)pµ − 2mzyp′µ + 2mz2pµ − 2m(1− y)pµ + 2mzpµ − 2myp′µ

]
u(p),

= u(p′)
[
mp′µ(−2zy − 2y) + mpµ(2zy + 2y + 2z2 − 2)

]
u(p),

= u(p′)
[
m(p′µ − pµ)(−2zy − 2y) + mpµ(2z2 − 2)

]
u(p),

= u(p′)
[
m(p′µ − pµ)(−2zy − 2y) + mpµ(2z2 − 2) + mp′µ(z2 − 1)−mp′µ(z2 − 1)

]
u(p),

= u(p′)
[
(p′µ + pµ)m(z2 − 1) + (p′µ − pµ)m(1− z2 − 2zy − 2y)

]
u(p),

∴ N → u(p′)
[
(p′µ + pµ)m(z2 − 1) + (p′µ − pµ)m(y − x)(z − 1)

]
u(p). (a.4)

We notice almost trivially that this satisfies the Ward identity because the term proportional to
qµ = (p′µ − pµ) is odd under the interchange of x ↔ y while the integral is symmetric under x ↔ y.
Therefore the term proportional qµ will vanish when integrated.

Recall that our goal is to discover this diagram’s contribution to the anomalous magnetic moment, the
F2(q2) term. We recall that we have defined the corrected vertex function Γµ in terms of the functions
F1 and F2 as

Γµ = γµF1(q2) +
iσµνqν

2m
F2(q2).

Because the term proportional to (p′µ + pµ) is multiplied on the outside by u(p′) and u(p), we may use
the Gordon identity to express it in terms of iσµνqν

2m and γµ. Because we are generally ignoring all terms
proportional to γµ, we may substitute

m(z2 − 1)(p′µ + p) → 2m2(1− z2)
iσµνqν

2m
.

Because F2(q2) is the term proportional to the iσµνqν

2m term, we see that this implies that

F2(q2) =
∫

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4
iλ2

2
2m2(1− z2)2
[`2 −∆ + iε]3

.



PHYSICS 523: QUANTUM FIELD THEORY II HOMEWORK 3 3

We may simplify this integral substantially by recalling our work in homework 2 when we computed
general integrals of this form. Taking the limit of q → 0, we see that

F2(q2) =
∫

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4
iλ2

2
2m2(1− z2)2
[`2 −∆ + iε]3

,

=
∫

dxdydzδ(3)(x + y + z − 1)
[
iλ2

2
−i

(4π)2
4m2(1− z2)

2
1
∆

]
,

=
λ2m2

e

16π2

∫
dxdydzδ(3)(x + y + z − 1)

(1− z2)
zm2

h + (1− z)2m2
e

,

=
λ2m2

e

16π2

∫ 1

0

dz
(1− z)(1− z2)

zm2
h + (1− z)2m2

e

,

≈ λ2m2
e

16π2

[∫ 1

0

dz
1

zm2
h + (1− z)2m2

e

− 1
m2

h

∫ 1

0

dz1 + z − z2

]
,

=
λ2m2

e

16π2m2
h




∫ 1

0

dz
1

z + (1− z)2 m2
e

m2
h

− 7
6


 . (a.8)

Now, let us simplify this formula in the limit where the Higgs mass is very much larger than the
electron.

F2(q2) ≈ λ2m2
e

16π2m2
h


 1

1− m2
e

m2
h

∫ 1

m2
e

m2
h

du
1
u
− 7

6


 ,

=
λ2m2

e

16π2m2
h


 1

1− m2
e

m2
h

(
ln(1)− ln

(
m2

e

m2
h

))
− 7

6


 ,

∴ F2(q2) ≈ λ2m2
e

16π2m2
h

[
ln

(
m2

h

m2
e

)
− 7

6

]
. (b.1)

Let us try to compute this contribution for real experimental numbers. We can take a more or less
‘good’ estimate of the Higgs vacuum expectation value as v = 246GeV. We know that the coupling
constant λ may be written in terms of the experimental mass of the electron as λe = me

v

√
2 ≈ 2.94 ×

10−6. If we take a rather hopeful estimate for the Higgs mass, we can assume it is near its lower
experimental bound at mh ≈ 114GeV. Using these numbers, we calculate an anomalous magnetic
moment contribution of

δhiggsae ≈ 2.58× 10−23. (b.2)

For the muon, we get a coupling to the Higgs of λµ = mµ

v

√
2 ≈ 6.03 × 10−4. Using the same

approximate Higgs mass of 114GeV, we see that the anomalous magnetic moment of the muon is altered
by

δhiggsaµ ≈ 2.51× 10−14. (b.3)

Let us now consider the contribution given for an interaction with an axion particle given by the
interaction Hamiltonian

H =
∫

dx iλ√
2
aψγ5ψ.

We see immediately that our vertex rule is given by

�
a

= λ√
2
γ5.
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Let us now write out the amplitude for the axion’s contribution to the vertex function. We see that

iM =�p k

p− k

k′ = k + q

←−q

p′

e−

=
∫

d4k
(2π)4 u(p′) λ√

2
γ5 i

((p−k)2−m2
a+iε)

i(6 k′+m)
(k′2−m2+iε) (−ieγµ) i(6 k+m)

(k2−m2+iε)γ
5 λ√

2
u(p),

∴ iM =
eλ2

2

∫
d4k

(2π)4
−u(p′)

[
γ5(6k′ + m)γµ(6k + m)γ5

]
u(p)

(k2 −m2 + iε)(k′2 −m2 + iε)((p− k)2 −m2
a + iε)

. (c.1)

We can simplify the numerator and demoninator as before. Notice that the only change in the
denominator algebra is that ∆ = −xyq2 + (1 − z)2m2

e − zm2
a. In the numerator, we can commute the

γ5 through each of the terms to get a minus sign relative to the ‘slash’ terms. When we also take into
account the overall minus which multiplies the numerator, we arrive at

iM =
eλ2

2

∫
d4k

(2π)4
u(p′) [(6k′ −m)γµ(6k −m)] u(p)

(k2 −m2 + iε)(k′2 −m2 + iε)((p− k)2 −m2
a + iε)

.

This is of course very similar to the equation derived in parts (a). Recall when we expanded all of the
terms for the Higgs, we had some of the ‘m’ terms that came from the Dirac algebra and some explicit
the equation as above. Taking these differences into account, we can use our work from part (a) to arrive
at a simplified numerator.

N → u(p′)
[
− 2mz(1− y)pµ − 2mzyp′µ + 2mz2pµ + 2m(1− y)pµ − 2mzpµ + 2myp′µ

]
u(p),

= u(p′)
[
mpµ(−2z(1− y) + 2z2 + 2− 2y − 2z) + mp′µ(−2zy + 2y)

]
u(p),

= u(p′)
[
m(p′µ − pµ)(2y − 2zy)m + mpµ(−4z + 2z2 + 2)

]
u(p),

= u(p′)
[
m(p′µ − pµ)(2y − 2zy)m + mpµ(−4z + 2z2 + 2) + mp′µ(1− z)2 −mp′µ(1− z)2

]
u(p),

= u(p′)
[
(p′µ + pµ)(1− z)2m + (p′µ − pµ)(2y − 2zy − (1− z)2)m

]
u(p).

Again, using the Gordong identity, we may write the contribution to F2(q2) as

F2(q2) =
∫

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4
iλ2

2
2m2(1− z)22
[`2 −∆ + iε]3

,

=
∫

dxdydzδ(3)(x + y + z − 1)
[
iλ2

2
−i

(4π)2
4m2(1− z)2

2
1
∆

]
,

∴ F2(q2) =
λ2m2

e

16π2

∫ 1

0

dz
(1− z)3

zm2
a + (1− z)2m2

e

. (c.2)

Now, this integral cannot be so easily takn in the limit of a heavy axion. In fact, experimental evidence
strongly limits the mass of the axion to be very, very light. The most restrictive data, from Supernova
1987a, restricts ma . 10−5eV. In the limit where the axion is very, very much lighter than the electron,
we see that

F2(q2) =
λ2m2

e

16π2

∫ 1

0

dz
(1− z)3

zm2
a + (1− z)2m2

e

,

≈ λ2

16π2

∫ 1

0

dz
(1− z)3

(1− z)2
=

λ2

32π2
,

∴ δaxionae ≈ δaxionaµ ≈ λ2

32π2
. (c.3)
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Due Wednesday, 11th February 2004

Jacob Lewis Bourjaily

The Electron Self-Energy
1. We are to verify the equation,

∫
d4`

(2π)4

(
1

[`2 −∆]2
− 1

[`2 −∆Λ]2

)
=

i

(4π)2
log

(
∆Λ

∆

)
.

To evaluate this, we will consider differentiation of the integral with respect to both ∆ and
∆Λ, considering them as separate, independent variables. Because the integration will commute
with these derivatives, we may use our results of to see

d

d∆
d

d∆Λ

∫
d4`

(2π)4

(
1

[`2 −∆]2
− 1

[`2 −∆Λ]2

)
=

∫
d4`

(2π)4
d

d∆
d

d∆Λ

(
1

[`2 −∆]2
− 1

[`2 −∆Λ]2

)
,

=
∫

d4`

(2π)4

(
d

d∆
1

[`2 −∆]2
− d

d∆Λ

1
[`2 −∆Λ]2

)
,

= 2
∫

d4`

(2π)4

(
1

[`2 −∆]2
− 1

[`2 −∆Λ]2

)
,

= 2
−i

(4π)2
1
2

(
1
∆
− 1

∆Λ

)
,

=
i

(4π)2

(
1

∆Λ
− 1

∆

)
,

=
i

(4π)2
d

d∆
d

d∆Λ
log

(
∆Λ

∆

)
.

Because the differentiation clearly commutes with the constant factor, we have that

∴
∫

d4`

(2π)4

(
1

[`2 −∆]2
− 1

[`2 −∆Λ]2

)
=

i

(4π)2
log

(
∆Λ

∆

)
. (1.1)

‘óπερ ’έδει δε�ιξαι

2. We are to find the roots of the simple quadratic,

(1− x)m2
0 + xµ2 − x(1− x)p2 = x2p2 − x(p2 + m2

0 − µ2) + m2
0 = 0.

Invoking the quadratic formula, we see immediately that the roots are given by

x =
p2 + m2

0 − µ2 ±
√

(p2 + m2
0 − µ2)2 − 4p2m2

0

2p2
,

=
1
2

+
m2

0

2p2
− µ2

2p2
± 1

2p2

√
p4 − 2p2(m2

0 + µ2) + (m2
0 − µ2)2,

∴ x =
1
2

+
m2

0

2p2
− µ2

2p2
± 1

2p2

√
[p2 − (m0 + µ)2][p2 − (m0 − µ)2]. (2.1)

3. We are to verify that when p2 > (m2
0 + µ2) there is at least one real root of the equation where

x ∈ (0, 1). First, we will show that the solutions are real. By checking the discriminant, we see
that

[p2 − (m0 + µ)2][p2 − (m0 − µ)2] > [p2 −m2
0 − µ2][p2 −m2

0 − µ2 + 2m0µ] > 1[1 + 2m0µ] > 0.

Therefore the quadratic has only real roots. Now, let us show that the sum of the two solutions
is positive. Noting that µ2 > 0, we have

x1 + x2 = 1− m2
0 − µ2

p2
> 1− m2

0 + µ2

p2
> 0.

1
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Therefore at least one of the two solutions must be positive. Lastly, we can show that the product
of the two solutions is positive. This will guarantee that both solutions must be positive. By
direct computation, we have

x1x2 =
1

4p4

((
p2 + m2

0 − µ2
)2 − (

p2 − (m0 + µ)2
) (

p2 − (m0 − µ)2
))

,

=
1

4p4

((
p2 + m2

0 − µ2
)2 − (

p2 −m2
0 − µ2 − 2m0µ

) (
p2 −m2

0 − µ2 + 2m0µ
))

,

>
1

4p4

((
p2 + m2

0 − µ2
)2 − (

p2 + m2
0 − µ2 − 2m0µ

) (
p2 + m2

0 − µ2 + 2m0µ
))

,

=
1

4p4

((
p2 + m2

0 − µ2
)2 − (

p2 + m2
0 − µ2

)2
+ 4m0µ

)
,

=
m0µ

p4
> 0.

Therefore, there are two real solutions to the equation. To show that a solution is confined to
the interval (0, 1) we note that in the physically reasonable case where µ → 0, the x2 solution
becomes

x2 =
1

2p2

(
p2 + m2

0 −
√

[p2 −m2
0][p2 −m2

0]
)

,

=
1

2p2

(
p2 + m2

0 − µ2 − p2 −m2
0

)
,

=
m2

0

p2
< 1.

Therefore x ∈ (0, 1) is a real root of the quadratic equation of interest.

4. We are to show that δF1(0) + δZ2 = 0. To do this, we must first compute δF1(0). Let us recall
the content of Peskin equation (6.47) while taking q → 0,

u(p′)δΓµu(p) = 4ie2

∫ 1

0

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4
u(p′)

[
γµ · (−½`2 + (1− 4z + z2)m2

)]
u(p)

[`2 −∆]3
.

We see that this term is just proportional to the δF1(0) term in our expression for δΓµ. To
actually compute this integral, we will require Pauli-Villars regularization of the term propor-
tional to `2. Also, we will use the fact that limΛ→∞∆Λ = zΛ2. Now, invoking the results of
homework 2, we have that

δF1(0) = 4ie2

∫ 1

0

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4

[(
−1

2

)(
`2

[`2 −∆]3
− `2

[`2 −∆Λ]3

)
+

(1− 4z + z2)m2

[`2 −∆]3

]
,

= 4ie2

∫ 1

0

dxdydzδ(3)(x + y + z − 1)
[ −i

2(4π)2
log

(
∆Λ

∆

)
− i

2(4π)2
(1− 4z + z2)m2

∆

]
,

=
α

2π

∫ 1

0

dxdydzδ(3)(x + y + z − 1)
[
log

(
∆Λ

∆

)
+

(1− 4z + z2)m2

∆

]
,

=
α

2π

∫ 1

0

dxdydzδ(3)(x + y + z − 1)
[
log

(
zΛ2

(1− z)2m2 + zµ2

)
+

(1− 4z + z2)m2

(1− z)2m2 + zµ2

]
,

=
α

2π

∫ 1

0

dz(1− z)
[
log

(
zΛ2

(1− z)2m2 + zµ2

)
+

(1− 4z + z2)m2

(1− z)2m2 + zµ2

]
.

Quoting Peskin equation (7.31),

δZ2 =
α

2π

∫ 1

0

dz

[
−z log

(
zΛ2

(1− z)2 + zµ2

)
+

2z(2− z)(1− z)m2

(1− z)2m2 + zµ2

]
.

Therefore,

δF1(0)− δZ2 =
α

2π

∫ 1

0

dz

[
(1− 2z) log

(
zΛ2

(1− z)2m2 + zµ2

)
+

(1− z)(1− 4z + z2)m2 + 2z(2− z)(1− z)m2

(1− z)2m2 + zµ2

]
,

=
α

2π

∫ 1

0

dz

[
(1− 2z) log

(
zΛ2

(1− z)2m2 + zµ2

)
+

m2(z3 − z2 − z + 1)
(1− z)2m2 + zµ2

]
.
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To evaluate this integral, we will integrate the first part using integration by parts. Recall

that, in general,
(
log f

g

)′
= f ′

f − g′

g = f ′g−g′f
fg . Therefore, we may compute,

∫ 1

0

dz(1− 2z) log
(

zΛ2

(1− z)2m2 + zµ2

)
,

u dv

log
(

zΛ2

(1−z)2m2+zµ2

)
↘+ (1− 2z)

m2(1−z2)
z((1−z)2m2+zµ2) ←−− z − z2

= (z − z2) log
(

zΛ2

(1− z)2m2 + zµ2

)∣∣∣∣
1

0

−
∫ 1

0

dz
m2(1− z2)(z − z2)

z ((1− z)2m2 + zµ2)
,

= 0−
∫ 1

0

dz
m2(1− z2)(z − z2)

z ((1− z)2m2 + zµ2)
,

∴
∫ 1

0

dz(1− 2z) log
(

zΛ2

(1− z)2m2 + zµ2

)
= −

∫ 1

0

dz
m2(z4 − z3 − z2 + z))
z ((1− z)2m2 + zµ2)

.

Therefore, we readily see that

δF1(0)− δZ2 =
α

2π

∫ 1

0

dz

[
(1− 2z) log

(
zΛ2

(1− z)2m2 + zµ2

)
+

m2(z3 − z2 − z + 1)
(1− z)2m2 + zµ2

]
,

=
α

2π

∫ 1

0

dz

[
m2(z4 − z3 − z2 + z)
z ((1− z)2m2 + zµ2)

+
m2(z3 − z2 − z + 1)
(1− z)2m2 + zµ2

]
,

=
α

2π

∫ 1

0

dz

[
m2(z4 − z3 − z2 + z)
z ((1− z)2m2 + zµ2)

+
z

z

m2(z3 − z2 − z + 1)
(1− z)2m2 + zµ2

]
,

=
α

2π

∫ 1

0

dz

[
m2(z4 − z3 − z2 + z)
z ((1− z)2m2 + zµ2)

+
m2(z4 − z3 − z2 + z)
z ((1− z)2m2 + zµ2)

]
,

= 0.

∴ δF1(0)− δZ2 = 0.
‘óπερ ’έδει δε�ιξαι
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Jacob Lewis Bourjaily

Dimensional Regularization

a) We are to evaluate the expression
∫

dd`E

(2π)d

1
(`2E + ∆)n

, for n ≥ 2.

In homework 2, problem 3 we showed that the d-dimensional volume element Ωd = 2πd/2

Γ(d/2) .
Using this, we see that

∫
dd`E

(2π)d

1
(`2E + ∆)n

=
∫

dΩd

(2π)d

∫ ∞

0

d`E
`d−1
E

(`2E + ∆)n
,

=
2πd/2

(2π)dΓ(d/2)

∫ ∞

0

d`E
`d−1
E

(`2E + ∆)n
,

=
2

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d`E
`d−1
E

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d(`2E)
(`2E)d/2−1

(`2E + ∆)n
.

We will defined the integration variable

η ≡ ∆
(`2E + ∆)

such that dη = − ∆
(`2E + ∆)2

d(`2E) and `2E = ∆η−1(1− η).

Note that under the η substitution, the limits of integration will change from (0,∞) 7→ (1, 0) ∼
−(0, 1). Also note the use of the definition of the Euler Beta function below. Making this
substitution in the required integral, we have

∫
dd`E

(2π)d

1
(`2E + ∆)n

=
1

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d(`2E)
(`2E)d/2−1

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

1
∆

∫ 1

0

dη
∆d/2−1η1−d/2(1− η)d/2−1

(`2E + ∆)n−2
,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)2−d/2 ∫ 1

0

dη

(
∆
η

)2−n

η1−d/2(1− η)d/2−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)2−d/2+n−2 ∫ 1

0

dηηn−2+1−d/2(1− η)d/2−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)n−d/2 ∫ 1

0

dηηn−d/2−1(1− η)d/2−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)n−d/2 Γ(n− d/2) · Γ(d/2)
Γ(n)

,

∴
∫

dd`E

(2π)d

1
(`2E + ∆)n

=
1

(4π)d/2

Γ(n− d/2)
Γ(n)

(
1
∆

)n−d/2

. (a.1)

‘óπερ ’έδει δε�ιξαι

1
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b) Let us now evaluate the expression
∫

dd`E

(2π)d

`2E
(`2E + ∆)n

, for n ≥ 2.

The evaluation of this integral will proceed identically to that in part (a) above. We will
introduce the same integration variable η ≡ ∆

(`2E+∆)
and follow the same procedure. We see that

∫
dd`E

(2π)d

`2E
(`2E + ∆)n

=
∫

dΩd

(2π)d

∫ ∞

0

d`E
`d+1
E

(`2E + ∆)n
,

=
2πd/2

(2π)dΓ(d/2)

∫ ∞

0

d`E
`d+1
E

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d(`2E)
(`2E)d/2

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

1
∆

∫ 1

0

dη
∆d/2η−d/2(1− η)d/2

(`2E + ∆)n−2
,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)1−d/2 ∫ 1

0

dη

(
∆
η

)2−n

η−d/2(1− η)d/2,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)1−d/2+n−2 ∫ 1

0

dηηn−1−d/2−1(1− η)d/2+1−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)n−d/2−1 Γ(n− 1− d/2) · Γ(d/2 + 1)
Γ(n)

.

Recall the elementary property of the Γ function that αΓ(α) = Γ(α + 1). Therefore we see that
Γ(d/2 + 1) = d

2Γ(d/2). Using this result, we see immediately that

∴
∫

dd`E

(2π)d

`2E
(`2E + ∆)n

=
1

(4π)d/2

d

2
Γ

(
n− d

2 − 1
)

Γ(n)

(
1
∆

)n−d/2−1

. (b.1)

‘óπερ ’έδει δε�ιξαι

c i) Let us show the following identity,

γµγνγµ = −(2− ε)γν .

Simply applying the anticommutation relation of the γ matrices, we see that1

γµγνγµ = gµργ
µγνγρ = 2gµρg

νργµ − gµργ
µγργν = 2δν

µγµ − dγν = (2− d)γν ,

∴ γµγνγµ = −(2− ε)γν . (c.1)

‘óπερ ’έδει δε�ιξαι

c ii) Let us show the following identity,

γµγνγργµ = 4gνρ − εγνγρ.

Simply applying the anticommutation relation of the γ matrices, we see that

γµγνγργµ = gµσγµγνγργσ = 2gµσgρσγµγν − 2gµσgµρ + gµσγµγσγνγρ,

= 2δρ
µγµγν − 2δσ

µγµγρ + dγνγρ = 2γργν + 2γνγρ − 4γνγρ + dγνγρ,

∴ γµγνγργµ = 4gνρ − εγνγρ. (c.2)

‘óπερ ’έδει δε�ιξαι

1We will repeatedly use that gµργµγρX = gµργργµX by symmetry of the inner product together with gµργµγρX =
2gµρgµρX − gµργργµX from the anticommutation relations, imply that gµργµγρX = gµρgµρX = dX for any product

of γ matrices X .
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c iii) Let us show the following identity,

γµγνγργσγµ = −2γσγργν + εγνγργσ.

Simply applying the anticommutation relation of the γ matrices, we see that

γµγνγργσγµ = gµτγµγνγργσγτ = gµτ (2gστγµγνγρ − 2gρτγµγνγσ + 2gντγµγργσ − gµτγνγργσ) ,

= 2δσ
µγµγνγρ − 2δρ

µγµγνγσ + 2δν
µγµγργσ − dγνγργσ = 2γσγνγρ − 4gνργσ + (4− d)γνγργσ,

= 4gµργσ − 2γσγργν − 4gνργσ + εγνγργσ,

∴ γµγνγργσγµ = −2γσγργν + εγνγργσ. (c.3)
‘óπερ ’έδει δε�ιξαι

The Ward Identity

a i) Let us compute the integral ∫
d4`

(2π)4
1

(`2 −∆)2
,

by restricting the integration region to the Euclidean sphere with `E < Λ. To accomplish this
calculation, we will recall several important results from earlier homework problems. Namely,
we will use the standard 4-dimensional volume element and change to Euclidean coordinates `E .
Notice the u substitution below.∫

d4`

(2π)4
1

(`2 −∆)2
=

∫
dΩ4

(2π)4

∫ ∞

0

d`
`3

(`2 −∆)2
,

=
2i

(4π)2

∫ ∞

0

d`E
`3E

(`2E + ∆)2
,

→ 2i

(4π)2
lim

Λ→∞

∫ Λ

0

d`E
`3E

(`2E + ∆)2
,

=
i

(4π)2
lim

Λ→∞

∫ Λ2+∆

∆

du
u−∆

u2
,

=
i

(4π)2
lim

Λ→∞

[
log(u)

∣∣∣∣
Λ2+∆

∆

+
∆
u

∣∣∣∣
Λ2+∆

∆

]
,

=
i

(4π)2
lim

Λ→∞

[
log

(
Λ2 + ∆

∆

)
− 1

]
,

=
i

(4π)2

[
log

(
Λ2

∆

)
− 1 + O

(
∆
Λ2

)]
.

ii) We are to compute the function Z1 from the δΓ(q = 0) calculation. Recall that in homework 5
question 4, we computed δF1(q = 0) using a different regularization. Because δZ1 = −δF1(q = 0)
much of our ‘hard labor’ has already been completed. Let us begin our calculation.

δZ1 = −4ie2

∫ 1

0

dz(1− z)
∫

d4`

(2π)4

[
−1

2
`2

(`2 −∆)3
+

m2(1− 4z + z2)
(`2 −∆)3

]
,

= −4ie2

∫ 1

0

dz(1− z)
∫

d4`

(2π)4

[
−1

2

(
1

(`2 −∆)3
+

∆
(`2 −∆)3

)
+

m2(1− 4z + z2)
(`2 −∆)3

]
,

= −4ie2

∫ 1

0

dz(1− z)
[
−1

2
i

(4π)2

(
log

(
Λ2

∆

)
− 1 + O

(
∆
Λ2

))
+

1
4

i

(4π)2
− 1

2
i

(2π)2
m2(1− 4z + z2)

∆

]
,

= − α

4π

∫ 1

0

dz(1− z)
[
log

(
Λ2

∆

)
− 1− 1

2
+

m2(1− 4z + z2)
∆

]
,

∴ δZ1 = − α

4π

∫ 1

0

log
(

Λ2

∆

)
− 3

2
+

m2(1− 4z + z2)
∆

.

‘óπερ ’έδει δε�ιξαι
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iii) Let us now compute the value of the electron self-energy function Zd. First, we must recall the
definition of Z2. It is the function

δZ2 =
dΣ2

d 6p

∣∣∣∣
6p=m

where

Σ2 = −ie2

∫ 1

0

dz

∫
d4`

(2π)4
−2z 6p + 4m

(`2 −∆)2
=

α

2π

∫ 1

0

dz(2m− z 6p)
[
log

(
Λ2

∆

)
− 1

]
.

Using the chain rule for differentiation, we see that

∴ δZ2 =
α

2π

∫ 1

0

dz

[
−z

(
log

(
Λ2

∆

)
− 1

)
+

2m2z(2− z)(1− z)
∆

]
.

iv) We will now compute the difference Z2−Z1 = δZ2− δZ1 for this regularization scheme. We will
call upon Peskin and Schroeder for algebraic simplification within the integrand. The cancella-
tion of the log-type term with the 1/∆ term was shown in homework 5. We have

δZ2 − δZ1 =
α

2π

∫ 1

0

dz

[
(1− 2z) log

(
Λ2

∆

)
+ z − 3

2
(1− z) +

2m2z(2− z)(1− z)
∆

− m2(1− 4z + z2)
∆

]
,

=
α

2π

∫ 1

0

dz

[
z − 3

2
(1− z)

]
=

α

2π

(
−1

4

)
,

∴ δZ2 − δZ1 = − α

8π
.

b i) Let us repeat our above calculation using dimensional regularization. We can begin our work
by generalizing the Dirac algebra used to calculate δZ1. Notice that this calculation will require
our d = 4− ε dimensional generalization of the Dirac algebra to simplify the numerator in

δΓµ(q2 = 0) = 2ie2

∫ 1

0

dz(1− z)
∫

dd`

(2π)d

γν (6` + z 6p) γµ (6` + z 6p) γν

(`2 −∆)3
.

Although we have already simplified our work by leaving off terms proportional to q, we may
reduce our labor even more. The regularization of this integral in d-dimensions is presented to
make sense of the divergence of the integral. Computing the integral in d = 4 − ε dimensions,
we avoid the divergence of the integral due to the term proportional to `2 in the numerator.
However, we should notice that no other terms in the integral will have a power of ` ≤ 4 in the
denominator and therefore will not diverge.

Therefore, only the `2-term will need to be regulated and the other parts of this integral can
be computed as usual.2

Let us then compute the regulated coefficient of the `2 term in the the numerator. To do
this, we will use our algebraic results from problem (1.c.iii) above. We also remind the reader
that in d-dimensions the integral is symmetric under `µ`ν → 1

dγµν`2. Therefore we see that our
regulated term is simply

γν 6`γµ 6`γν = `ρ`σγνγργµγσγν ,

= `ρ`σ (−2γσγµγρ + εγργµγσ) ,

= −4 6``µ + 2 6`2γµ + 2ε 6``µ − ε 6`2γµ,

= −4
d
`2γµ + 2`2γµ +

2ε

d
`2γµ − ε`2γµ,

= γµ`2
(−4 + 2ε

d
+ 2− ε

)
,

= γµ`2
(ε− 2)2

d
.

2It makes little sense to regulate a convergent integral. More rigorously, one could carry ε dependence on all terms and
then ‘observe’ that for all but the term proportional to `2 in the numerator, ε → 0 will not affect the integral. Therefore
we may view the introduction of ε into those terms as a waste of time.
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Now that we have fully established the need only to regularize this piece of the integral, let
us calculate the regularized form of δZ1. During the computation below, we have referred to the
canonical results for expansions of ∆, Γ, 1

(4π) in terms of ε. Many of these relations were derived
in homework sets 2 and 5. Let us proceed directly.

δZ1 = −2ie2

∫ 1

0

dz(1− z)
∫

dd`

(2π)d

[
(ε− 2)2

d

`2

(`2 −∆)3
+

m2(1− 4z + z2)
(`2 −∆)3

]
,

= −2ie2

∫ 1

0

dz(1− z)

[
(ε− 2)2

d

d

4
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
− i

2
1

(4π)2
m2(1− 4z + z2)

∆

]
,

=
α

2π

∫ 1

0

dz(1− z)
[
(ε− 2)2

4

(
2
ε
− log ∆− γE + log(4π)

)
− 1

2
m2(1− 4z + z2)

∆

]

∴ δZ1 =
α

2π

∫ 1

0

dz(1− z)
[
−

(
2
ε
− 2− log ∆− γE + log(4π)

)
− 1

2
m2(1− 4z + z2)

∆

]
.

ii) Let us now regularize the term Z2. This computation will be very similar to that above. We
will first need to rework some minor Dirac algebra. Unlike last time, however, the entire integral
will diverge and so we will need to keep ε terms consistently in our equations. Recall that Z2 is
related to a derivative of the integral

Σ2(p) = −ie2

∫ 1

0

dz

∫
dd`

(2π)d

γµ (6` + z 6p + m) γµ

(`2 −∆)2
.

Recalling that terms proportional to ` in the integral will integrate to zero because of Lorentz
covariance, we may drop the ` term. Furthermore, using only the relatively trivial Dirac algebra
identities derived above, we see that

γµ (6` + z 6p + m) γµ → −z(2− ε) 6p + dm.

Therefore we may compute this integral directly.

Σ2(p) = −ie2

∫ 1

0

dz

∫
dd`

(2π)d
(−(2− ε)z 6p + (4− ε)m)

1
(`2 −∆)2

,

= −ie2

∫ 1

0

dz

[
(−(2− ε)z 6p + (4− ε)m)

i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2

]
,

=
α

2π

∫ 1

0

dz

[
1
2

((4− ε)m− (2− ε)z 6p)
(

2
ε
− log ∆− γE + log(4π)

)]
.

Therefore we see by simple chain-rule differentiation that

δZ2 =
dΣ2

d 6p

∣∣∣∣
6p=m

=
α

2π

∫ 1

0

dz
1
2

[
(ε− 2)z

(
2
ε
− log ∆− γE + log(4π)

)
− m22z(1− z) ((ε− 2)z + (4− ε))

∆

]
,

=
α

2π

∫ 1

0

dz

[
z

(
1− 2

ε
+ log ∆ + γE − log(4π)

)
− m22z(1− z) (2− z)

∆

]
,

iii) Unfortunately, I was unable to derive the explicit cancellation. It appears as if I may have
introduced an incorrect minus sign somewhere. In the correct form, one should see the total
integral vanish so that

δZ2 − δZ1 = 0.
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Jacob Lewis Bourjaily

Superficial Divergences
Let us consider ϕ3 scalar field theory in d = 4 dimension. The Lagrangian for this theory is

L =
1
2
(∂µϕ)2 − 1

2
m2ϕ2 − 1

3!
gϕ3.

a) Let us determine the superficial divergence D for this theory in terms of the number of vertices
V and the number of external lines N . From this we are to show that the theory is super-
renormalizable.
In generality, the superficial divergence of a ϕn theory in d dimensions can be given by

D = dL − 2P , where L is the number of loops and P is the number of propagators
because each loop contributes a d-dimensional integration and each propagator con-
tributes a power of 2 in the denominator. Furthermore, we see that nV = N + 2P
because each external line connects to one vertex and each propagator connects two
and each vertex involves n lines. This implies that P = ½(nV −N).

Therefore, still in complete generality, the superficial divergence of a ϕn theory in d-
dimensions may be written

D = dL− 2P =
d

2
nV − d

2
N − dV + d− nV + N,

= d +
(

n
d− 2

2
− d

)
V − d− 2

2
N.

Therefore, in a 4-dimensional ϕ3-theory the superficial divergence is given by

D = 4− V −N. (1.a.1)
‘óπερ ’έδει δε�ιξαι

We see that because D ∝ −V the theory is super-renormalizable.

b) We are to show the superficially divergent diagrams for this theory that are associated with the
exact two-point function.
Using equation (1.a) above, we see that the three superficially divergent diagrams in this

ϕ3-theory associated with the exact two-point function are:

��c) Let us compute the mass dimension of the coupling constant g.
Because L must have dimension (mass)4 each term should have dimension (mass)4.

Because of the m2ϕ2 term, this implies that the field ϕ has dimension (mass)1.
Therefore the coupling g must have dimension (mass)1.

Renormalization and the Yukawa Coupling
We are to consider the theory of elementary fermions that couple to both QED and a Yukawa field φ

governed by the interaction Hamiltonian

Hint =
∫

d3x
λ√
2
φψψ +

∫
d3xeAµψγµψ.

a) Let us verify that δZ1 = δZ2 to the one-loop order.
We computed in homework 4 the amplitude for the ψγψ vertex with a virtual scalar φ,

iM =�p k

p− k

k′ = k + q

←−q

p′

e−

=
∫

d4k
(2π)4 u(p′)−iλ√

2
i

((p−k)2−m2
φ+iε)

i(6k′+m)
(k′2−m2+iε) (−ieγµ) i(6k+m)

(k2−m2+iε)
−iλ√

2
u(p),

1
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In the limit where q → 0, we see that this implies

u(p)δΓµu(p) = i
λ2

2

∫
ddk

(2π)d

u(p) [(6k + m) γµ (6k + m)] u(p)
((p− k)2 −m2

φ + iε)(k2 −m2 + iε)(k2 −m2 + iε)
.

Using Feynman parametrization to simplify the denominator, we will use the variables

` ≡ k − zp and ∆ ≡ (1− z)2m2 + zm2
φ.

The numerator of the integrand is then reduced to

N = u(p) [(6` + z 6p + m) γµ (6` + z 6p + m)] u(p),

= u(p)
[6`γµ 6` + z2 6pγµ 6p + mz 6pγµ + mzγµ 6p + m2γµ

]
u(p),

= u(p)
[
1
d
`2(2γµ − dγµ) + z2m2γµ + m2zγµ + m2zγµ + m2γµ

]
u(p),

= u(p)
[
γµ

(
2− d

d
`2 + m2(1 + z)2

)]
u(p).

Combining this with our work above, we see that this implies

δZ1 = −δF1(q = 0) = −i
λ2

2

∫ 1

0

dz(1− z)2
∫

dd`

(2π)d

[ (
2−d

d

)
`2

[`2 −∆ + iε]3
+

m2(1 + z)2

[`2 −∆ + iε]3

]
,

= −i
λ2

2

∫ 1

0

dz(1− z)

[
2− d

d

d

2
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
− i

(4π)2
m2(1 + z)2

∆

]
,

' λ2

32π2

∫ 1

0

dz(1− z)
[
2− d

2

(
2
ε
− log ∆− γE + log(4π)

)
− m2(1 + z)2

∆

]
,

=
λ2

32π2

∫ 1

0

dz(1− z)
[
ε− 2

2

(
2
ε
− log ∆− γE + log(4π)

)
− m2(1 + z)2

∆

]
,

∴ δZ1 =
λ2

32π2

∫ 1

0

dz(1− z)
[
1−

(
2
ε
− log ∆− γE + log(4π)

)
− m2(1 + z)2

∆

]
(2.a.1)

Let us now compute the one-loop contribution of φ to the electron two-point function,

�p k

p− k

p
e−





=⇒ Σφ2 = λ2

2

∫
d4k

(2π)4
i( 6k+m)

((p−k)2−m2
φ+iε)(k2−m2+iε)

We will define the following variables for Feynman parametrization of the denominator:

` ≡ k − zp, and ∆ ≡ −z(1− z) 6p2 + zm2
φ + (1− z)m2.

We see therefore that

Σφ2 = i
λ2

2

∫ 1

0

dz

∫
dd`

(2π)d

z 6p + m

[`2 −∆ + iε]2
,

= i
λ2

2

∫ 1

0

dz(z 6p + m)
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
,

' − λ2

32π2

∫ 1

0

dz(z 6p + m)
(

2
ε
− log ∆− γE + log(4π)

)
.

Therefore,

δZ2 =
∂Σφ2

∂ 6p

∣∣∣∣
6p=m

= − λ2

32π2

∫ 1

0

dz

[
z

(
2
ε
− log ∆− γE + log(4π)

)
+ (zm + m)

2mz(1− z)
∆

]
,

∴ δZ2 = − λ2

32π2

∫ 1

0

dz

[
z

(
2
ε
− log ∆− γE + log(4π)

)
+

2m2z(1 + z)(1− z)
∆

]
. (2.a.2)
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Let us now compute the difference δZ2 − δZ1. We see that

δZ2 − δZ1 =
λ2

32π2

∫ 1

0

dz

[
(1− 2z) log

(
1
∆

)
+ (1− 2z)

(
2
ε
− γE + log(4π)

)
− (1− z)− m2(1− z)(1 + z)

∆
(2z − (1 + z))

]
,

=
λ2

32π2

∫ 1

0

dz

[
(1− 2z) log

(
1
∆

)
− (1− z) +

m2(1− z)2(1 + z)
∆

]
,

=
λ2

32π2

∫ 1

0

dz

[
(1− z)− m2(1− z)(1− z2)

∆
− (1− z) +

m2(1− z)2(1 + z)
∆

]
,

=
λ2

32π2

∫ 1

0

dz

[
−m2(1− z)2(1 + z)

∆
+

m2(1− z)2(1 + z)
∆

]
,

∴ δZ2 − δZ1 = 0. (2.a.3)
‘óπερ ’έδει δε�ιξαι

We can expect that Z1 = Z2 quite generally in this theory because our proof of the
Ward-Takahashi identity relied, fundamentally, on the local U(1) gauge invariance of
the Aµ term in the Lagrangian which is not altered by the addition of the scalar φ.

b) Let us now consider the renormalization of the ψφψ vertex in this theory.
The two diagrams at the one-loop level that contribute to u(p′)δΓu(p) are

�p k

p− k

k′ = k + q

p′

←−q

e−

+�p k

p− k

k′ = k + q

p′

←−q

e−
These diagrams yield

u(p′)δΓu(p) =
∫

ddk

(2π)d
u(p′)

[(
−i

λ√
2

)
i

((p− k)2 −m2
φ + iε)

i(6k+ 6q + m)
((k + q)2 −m2 + iε)

i(6k + m)
(k2 −m2 + iε)

(
−i

λ√
2

)

+(−ieγµ)
i(6k+ 6q + m)

((k + q)2 −m2)
−i

((p− k)2 − µ2)
i(6k + m)

(k2 −m2)
(−ieγµ)

]
u(p).

Taking the limit where q → 0 and introducing the variables

` ≡ k − zp, ∆1 ≡ (1− z)2m2 + zm2
φ, and ∆2 ≡ (1− z)2m2 + zµ2,

this becomes,

u(p)δΓu(p) =
∫ 1

0

dz(1− z)
∫

dd`

(2π)d
u(p)

[
iλ2 `2 + (1 + z)2m2

(`2 −∆1 + iε)3
− 2ie2 d`2 + m2

(
d(z2 + 1) + 2z(2− d)

)

(`2 −∆2 + iε)3

]
u(p).

Therefore,

δZ ′1 = −δF ′1 =
∫ 1

0

dz(1− z)
∫

dd`

(2π)d

[
−iλ2 `2 + (1 + z)2m2

(`2 −∆1 + iε)3
+ 2ie2 d`2 + m2

(
d(z2 + 1) + 2z(2− d)

)

(`2 −∆2 + iε)3

]
,

=
∫ 1

0

dz(1− z)
∫

dd`

(2π)d

[
−iλ2 `2

(`2 −∆1 + iε)3
+ 2ie2 d`2

(`2 −∆2 + iε)3

]
+ finite terms,

=
∫ 1

0

dz(1− z)

[
λ2

4
d

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
1

− e2

2
d2

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
2

]
+ finite terms,

=
∫ 1

0

dz(1− z)
[

λ2

16π2

(
2
ε
− log ∆1 − γE + log(4π)− 1

2

)
− 2α

π

(
2
ε
− log ∆2 − γE + log(4π)− 1

)]
+ finite terms,

=
∫ 1

0

dz(1− z)
2
ε

(
λ2

16π2
− 2α

π

)
+ finite terms,

∴ δZ ′1 =
1
ε

(
λ2

16π2
− 2α

π

)
+ finite terms. (2.b.2)
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Now let us compute δZ ′2. We see that this factor comes from the diagrams,

�p k

p− k

p
e− +�p k

p− k

p
e−

We see that we have already computed both of these contributions; the first diagram’s
contribution was computed above and the second diagram’s contribution was com-
puted in homework 6.

Therefore, we note that

δZ ′2 =
1
ε

(
− λ2

32π2
− α

2π

)
+ finite terms. (2.b.3)

Combining these results, we have that

∴ δZ ′2 − δZ ′1 =
3
ε

(
α

2π
− λ2

32π2

)
+ finite terms 6= 0. (2.b.4)

‘óπερ ’έδει δε�ιξαι
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Due Wednesday, 10th March 2004

Jacob Lewis Bourjaily

Renormalization of Pseudo-Scalar Yukawa Theory
Let us consider the theory generated by the Lagrangian

L =
1
2
(∂µφo)2 − 1

2
m2

φo
φ2

o + ψo(i 6∂ −meo)ψo − igoψoγ
5ψoφo.

Superficially, this theory will diverge very similarly to quantum electrodynamics because the fields
and the coupling constant have the same dimensions as in quantum electrodynamics. Therefore, we see
that the superficial divergence is given by D = 4L − 2Pφ − Pe where L represents the number of loops
and Pφ and Pe represent the number of pseudo-scalar and fermion propagator particles, respectively.
Furthermore, we see that this can be reduced to

D = 4−Nφ − 3
2
Ne, (a.1)

where Nφ and Ne represent the number of external pseudo-scalar and fermion lines, respectively.
We see that this implies that the following diagrams are superficially divergent:

a)� D = 4 b)� D = 3 c)� D = 2

d)� D = 1 e)� D = 0 f)� D = 1

g)� D = 0

Although vacuum energy is an extraordinarily interesting problem of physics, we will largely ignore
diagram (a) which is quite divergent. We note that because the Lagrangian is invariant under parity
transformations φ(t,x) → −φ(t,−x) any diagram with an odd number of external φ’s will give zero. In
particular, the divergent diagrams (b) and (d) will be zero.

The first divergent diagram we will consider, (c), is clearly ∼ a0Λ2 +a1p
2 log Λ where we note that the

term proportional to p in the expansion vanishes by parity symmetry. Similarly, we näıvely suspect that
the divergence of diagram (f) would be ∼ a0Λ+ 6p log Λ but the term linear in Λ is reduced to me log Λ
by the symmetry of the Lagrangian of chirality inversion of ψ together with φ → −φ. The diagrams (e)
and (g) are both ∼ log Λ. All together, there are six divergent constants in this theory.

We note that because the diagram (e) diverges, we must introduce a counterterm δλ which implies
that our original Lagrangian should have included a term λ

4!φ
4.

We define renormalized fields, φo ≡ Z
1/2
φ φ and ψo ≡ Z

1/2
2 ψ, where Zφ and Z2 are as would be

defined canonically. Using these our Lagrangian can be written as

L =
1
2
Zφ(∂µφ)2 − 1

2
Zφm2

φo
φ2 − Z2ψ(i 6∂ −meo)ψ −−igoZ2Z

1/2
φ ψγ5ψφ− λ

4!
Z2

φφ4.

Let us define the counterterms,

δmφ
≡ Zφm2

φo
−m2

φ, δme ≡ Z2meo−me, δφ ≡ Zφ−1, δλ ≡ λoZ
2
φ−λ, δ1 ≡ go

g
Z2Z

1/2
φ −1, δ2 ≡ Z2−1.

Therefore, we may write our renormalized Lagrangian

L =
1
2
(∂µφ)2 − 1

2
m2

φφ2 + ψ(i 6∂ −me)ψ − igψγ5ψφ− λ

4!
φ4

+
1
2
δφ(∂µφ)2 − 1

2
δmφ

φ2 + ψ(iδ2 6∂ − δme)ψ − igδ1ψγ5ψφ− δλ

4!
φ4. (a.4)

1
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Let us compute the pseudo-scalar self-energy diagrams to the one-loop order, keeping only the diver-
gent pieces. This corresponds to:

−iM2(p2) =�p p

k

+�p k + p

p

k

+�p p
×

Using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ε−1) we see that

−iM2(p2) = −i
λ

2

∫
ddk

(2π)d

i

k2 −m2
φ

− g2

∫
ddk

(2π)d
Tr

[
γ5i(6k+ 6p + me)iγ5(6k + me)
((k + p)2 −m2

e)(k2 −m2
e)

]
+ i(p2δφ − δme),

= −i
λ

2
1

(4π)d/2

Γ
(
1− d

2

)

(m2
φ)1−d/2

− 4g2

∫ 1

0

dx

∫
ddk

(2π)d

`2 − x(1− x)p2 −m2
e

(`2 −∆)2
+ i(p2δφ − δm2),

= −i
λ

2
1

(4π)d/2

m2
φ

(1− d/2)
Γ

(
2− d

2

)

(m2)2−d/2
− 4g2

∫ 1

0

dx

[
− i

(4π)d/2

d

2
Γ

(
1− d

2

)

∆1−d/2
+

i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2

(
x(1− x)p2 + m2

e

)
]

+ i(p2δφ − δm2),

∼ i
λm2

φ

32π2

2
ε
− 8g2 i

(4π)2
2
ε

∫ 1

0

dx
(
m2

e − x(1− x)p2
)

+ 4g2 i

(4π)2
2
ε

∫ 1

0

dx
(
m2

e + x(1− x)p2
)

+ i(p2δφ − δm2),

= i
λm2

φ

16π2

1
ε

+ i
g2

4π2

2
ε

(
−2m2

e +
2
6
p2 +

1
6
p2 + m2

e

)
+ i(p2δφ − δm2),

= i

(
λm2

φ

16π2
+

g2p2

4π2
− g2m2

e

2π2

)
1
ε

+ i(p2δφ − δm2).

Therefore, applying our renormalization conditions, we see that1

∴ δmφ
=

(
λm2

φ

16π2
− g2m2

e

2π2

)
1
ε
, δφ = −

(
g2

4π2

)
1
ε
. (b.1)

Similarly, let us compute the fermion self-energy diagrams to one-loop order, keeping only divergent
parts. This corresponds to:

−iΣ2
2(6p) =�p k

p− k

p
+�p p

×
Again, using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ε−1) we see that

−iΣ(6p) = g2

∫
ddk

(2π)d

[
γ5 i

((p− k)2 −m2
φ)

i(6k + me)
(k2 −m2

e)
γ5

]
+ i(6pδ2 − δme),

= −g2

∫
ddk

(2π)d

6k −me

(k2 −m2
e)((p− k)2 −m2

φ)
+ i(6pδ2 − δme),

= −g2

∫ 1

0

dz

∫
dd`

(2π)d

6pz −me

(`2 −∆)2
+ i(6pδ2 − δm2),

∼ −i
g2

(4π)2
2
ε

∫ 1

0

dz (6pz −me) + i(6pδ2 − δme),

= i

(
g2 6p
16π2

− g2me

8π2

)
1
ε

+ i 6pδ2 − iδme .

Therefore, applying our renormalization conditions, we see that

∴ δme = −
(

g2me

8π2

)
1
ε
, δ2 = −

(
g2

16π2

)
1
ε
. (b.2)

1For renormalization conditions and Feynman rules please see the Appendix.
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Let us now compute the δ1 counterterm by computing δΓ5(q = 0) given by:

δΓ5(q = 0) =�p k

p− k

k + q

p′

←−q ∼ 0
+�×

Again, using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ε−1) we see that

δΓ5(q = 0) = −ig2

∫
ddk

(2π)d

γ5(6k + me)γ5(6k + me)γ5

((p− k)2 −m2
φ)(k2 −m2

e)(k2 −m2)
+ δ1γ

5,

= ig2γ5

∫
ddk

(2π)d

(6k + me)(6k −me)
((p− k)2 −m2

φ)(k2 −m2
e)(k2 −m2)

+ δ1γ
5,

= ig2γ5

∫ 1

0

dz

∫
dd`

(2π)d

`2 + (z2 − 1)m2
e

(`2 −∆)3
+ δ1γ

5,

= ig2γ5

∫ 1

0

dz(1− z)
[

i

(4π)2
d

2
2
ε

]
+ δ1γ

5,

= −γ5 g2

8π2

1
ε

+ δ1γ
5.

Therefore, applying our renormalization conditions, we see that

∴ δ1 =
(

g2

8π2

)
1
ε
. (b.3)

Let us now compute the δλ counterterm by computing the one-loop correction to the standard φ4

vertex. The five contributing diagrams are:

iM =� +� +� +� +�×
We may save a bit of sweat by noting that the sum of the first four diagrams is identical to the analogous
diagrams in φ4-theory. The sum was computed fully both in class and in the text and give a divergent
contribution of 3λ2

16π2
1
ε to δλ. Therefore, we are only burdened with the calculation of the remaining two.

We see that, (note the combinatorial factor of 6)

iM = i
3λ2

16π2

1
ε
− 6g4

∫
ddk

(2π)d
Tr

[
γ5(6k + me)γ5(6k−6p1 + me)γ5(6k−6p1−6p2 + me)γ5(6k−6p1−6p2+ 6p3 + me)

(k2 −m2
e)((k − p1)2 −m2

e)((k − p1 − p2)2 −m2
e)((k − p1 − p2 + p3)2 −m2

e)

]
− iδλ,

∼
k→∞ i

3λ2

16π2

1
ε
− 6g4

∫
ddk

(2π)d

Tr
[
γ5 6kγ5 6kγ5 6kγ5 6k]

(k2 −m2
e)

4 − iδλ,

= i
3λ2

16π2

1
ε
− 6g4

∫
ddk

(2π)d

4k4

(k2 −m2
e)4

− iδλ,

= i
3λ2

16π2

1
ε
− 24g2 i

(4π)d/2

d(d + 2)
4

Γ
(
2− d

2

)

6∆2−d/2
− iδλ,

= i
3λ2

16π2

1
ε
− i

3g4

π2

1
ε
− iδλ.

Therefore, applying our renormalization conditions, we see that

∴ δλ =
(

3λ2

16π2
− 3g4

π2

)
1
ε
. (b.4)
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Appendix

Feynman Rules and Renormalization Conditions

Given the Lagrangian for pseudo-scalar Yukawa theory,

L =
1
2
(∂µφ)2 − 1

2
m2

φφ2 + ψ(i 6∂ −me)ψ − igψγ5ψφ− λ

4!
φ4

+
1
2
δφ(∂µφ)2 − 1

2
δmφ

φ2 + ψ(iδ2 6∂ − δme
)ψ − igδ1ψγ5ψφ− δλ

4!
φ4,

we can derive the renormalized Feynman rules.

� = i
p2−mφ2+iε � = i

6p−me+iε

� = −iλ � = gγ5

�× = i(p2δφ − δmφ
) �p p

× = i(6pδ2 − δme)

�× = −iδλ �× = gδ1γ
5

To derive the counter terms explicitly, it is necessary to offer a convention of renormalization condi-
tions. Above, we have used the conditions:

� = i
p2−mφ2+iε with pole = 1.

� = −iλ at s = 4m2, t = u = 0.

Σ(6p = m) = 0.

dΣ(6p)
d 6p

∣∣∣∣
6p=m

= 0.

gΓ5(q = 0) = gγ5.
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β-Functions in Pseudo-Scalar Yukawa Theory
Let us consider the massless pseudo-scalar Yukawa theory governed by the renormalized Lagrangian,

L =
1
2
(∂µφ)2 + ψi 6∂ψ − igψγ5ψφ− λ

4!
φ4

+
1
2
δφ(∂µφ)2ψiδψ 6∂ψ − igδgψγ5ψφ− δλ

4!
φ4.

In homework 8, we calculated the divergent parts of the renormalization counterterms δφ, δψ, δg, and
δλ to 1-loop order. These were shown to be

δφ = − g2

8π2
log

Λ2

M2
, δψ = − g2

32π2
log

Λ2

M2
;

δλ =
(

3λ2

32π2
− 3g4

2π2

)
log

Λ2

M2
, δg =

g2

16π2
log

Λ2

M2
.

Using the definitions of Bi and Ai in Peskin and Schroeder, these imply that

Aφ = −γφ = − g2

8π2
, Aψ = −γψ = − g2

32π2
;

Bλ =
3g4

2π2
− 3λ2

32π2
Bg = − g2

16π2
.

Therefore, we see that

βg = −2gBg − 2gAψ − gAφ = 2g
g2

16π2
+ 2g

g2

32π2
+ g

g2

8π2
=

5g3

16π2
;

βλ = −2Bλ − 4λAφ = 2
(

3λ2

32π2
− 3g4

2π2

)
+ 4λ

g2

8π2
=

3λ2 + 8λg2 − 48g4

16π2

While it was supposedly unnecessary, the running couplings were computed to be1,

g(p) =

√
16π2

1− 10 log p/M
;

λ(p) = λ =
g2

3

(
1 +

√
145

− 4
√

145+149
141 + g2

√
145/5

− 4
√

145+149
141 − g2

√
145/5

)
.

Notice that both g and λ generally become weaker at large distances because for typical values
of g, λ we see that βg and βλ are both positive. However, if λ << g then βλ will be negative and so λ
will grow stronger at larger distances. Near small values of g and λ the theory shows interesting interplay
between g and λ. Also interesting is the characteristic Landau pole in λ suggesting that we should not
trust this theory at too large a scale.

Below is a graph of g versus −λ indicating the direction of Renormalization Group flow as the inter-
action distance grows larger.

100 200 300 400 500 600 700
-Λ
�
HpL

2.5

5

7.5

10

12.5

15

17.5

g�HpL

Figure 1. Renormalization Group Flow as a funciton of scale. Arrow indicates flow in
the direction of larger distances. For this plot, M was taken to be 104.

1See appendix.

1



2 JACOB LEWIS BOURJAILY

Minimal Subtraction
Let us define the β-function as it appears in dimensional regularization as

β(λ, ε) = M
d

dM
λ

∣∣∣∣
λ0,ε

,

where it is understood that β(λ) = limε→0 β(λ, ε). We notice that the bare coupling is given by λ0 =
M εZλ(λ, ε)λ where Zλ is given by an expansion series in ε,

Zλ(λ, ε) = 1 +
∑
ν=1

aν(λ)
εν

.

We are to demonstrate the following.
a) Let us show that Zλ satisfies the identity (β(λ, ε) + ελ)Zλ + β(λε)λdZλ

dλ = 0.
proof: Noting the general properties of differentiation from elementary analysis, we will

proceed by direct computation.

(β(λ, ε) + ελ) Zλ + β(λ, ε)λ
dZλ

dλ
= β(λ, ε)Zλ + ελZλ + β(λ, ε)

d(Zλλ)
dλ

− β(λ, ε)Zλ,

= ελZλ + M
dλ

dM

∣∣∣∣
λ0,ε

d(λ0M
−ε)

dλ
,

= ελZλ − εMλ0M
−ε−1,

= ελZλ − εM1+εM−ε−1Zλλ,

= 0.

∴ (β(λ, ε) + ελ)Zλ + β(λε)λ
dZλ

dλ
= 0.

‘óπερ ’έδει δε�ιξαι

b) Let us show that β(λ, ε) = −ελ + β(λ).
proof: We have demonstrated in part (a) above that (β(λ, ε) + ελ)Zλ + β(λε)λdZλ

dλ = 0.
Dividing this equation by Zλ and rearranging terms and expanding in Zλ, we obtain

β(λ, ε) + ελ = −β(λ, ε)
λ

Zλ

dZλ

dλ
,

= −β(λ, ε)
λ

Zλ

(
1
ε

da1

dλ
+

1
ε2

da2

dλ
+ · · ·

)
,

= −β(λ, ε)λ
(

1
ε

da1

dλ
+

1
ε2

da2

dλ
+ · · ·

) (
1− a1

ε
+ · · ·

)
.

Now, we know that β(λ, ε) must be regular in ε as ε → 0 and so we may expand it as
a (terminating)2 power series β(λ, ε) = β0 + β1ε + β2ε

2 + · · ·+ βnεn. We notice that
β(λ) = β0 in this notation. Let us consider the limit of ε →∞.

For any n > 0, we see that the order of the polynomial on the left hand side has degree
n whereas the polynomial on the left hand side has degree n− 1 because as ε →∞,
the equation becomes βnεn = −βnεnλ 1

ε
da1
dλ . But this is a contradiction. −→←−

Therefore, both the right and left hand sides must have degree less than or equal to 0.
Furthermore, because the left hand side is β(λ, ε) + ελ = β0 + β1ε + ελ must have
degree zero, we see that β1 = −ε.

So, expanding β(λ, ε) as a power series of ε, we obtain,

∴ β(λ, ε) = −ελ + β(λ).
‘óπερ ’έδει δε�ιξαι

2Professor Larsen does note believe this to be necessary. However, we have been unable to demonstrate the required
identity without assuming a terminating power series.
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c.i) Let us show that β(λ) = λ2 da1
dλ .

proof: By rewriting the identity obtained from part (a) above and expanding in Zλ we see
that

(β(λ, ε) + ελ) Zλ = −β(λ, ε)λ
dZλ

dλ
,

(β(λ, ε) + ελ)
(
1 +

a1

ε
+ · · ·

)
= −β(λ, ε)λ

(
1
ε

da1

dλ
+ · · ·

)
.

We see that because there is no term on the right hand side of order ε0, it must be that
β(λ, ε) + λa1 = 0 which implies that β(λ, ε) = −λa1. Furthermore, by equating the
coefficients of 1

εn , we have in general that β(λ, ε)an + λan+1 = −β(λ, ε)λdan

dλ . By
rearranging terms and using noticing the chain rule of differentiation, we see that
this implies that

λan+1 = −β(λ, ε)
(

λ
dan

dλ
+ an

)
= −β(λ, ε)

d(λan)
dλ

.

This fact will be important to the proof immediately below.
Now, by the result of part (b) above, we know that

β(λ)Zλ = (β(λ, ε) + ελ)Zλ = −β(λ, ε)λ
dZλ

dλ
,

β(λ)
(
1 +

a1

ε
+ · · ·

)
= (β(λ, ε) + ελ)Zλ = −β(λ, ε)λ

(
1
ε

da1

dλ
+ · · ·

)
.

Equating the coefficients of terms of order 1
ε on the far left and right sides, we see that

β(λ)a1 = −β(λ, ε)λ
da1

dλ
.

Now, using our result from before that β(λ, ε) = −λa1, we see directly that

∴ β(λ) = λ2 da1

dλ
.

‘óπερ ’έδει δε�ιξαι

c.ii) Let us show that β(λ)d(λaν)
dλ = λ2 daν+1

dλ .
proof: By our result in part (b) above, we have that

β(λ) = (β(λ, ε) + ελ) ,

∴ β(λ)
d(Zλλ)

dλ
= (β(λ, ε) + ελ)

d(Zλλ)
dλ

,

β(λ)
(

1 +
1
ε

d(λa1)
dλ

+ · · ·
)

= (β(λ, ε) + ελ)
(

1 +
1
ε

d(λa1)
dλ

+ · · ·
)

.

Equating the coefficients of 1
εν on both sides, we see that by using the identities shown

above,

β(λ)
d(λaν)

dλ
= β(λ, ε)

d(λaν)
dλ

+ λ
d(λaν+1)

dλ
,

= β(λ, ε)
d(λaν)

dλ
+ λ2 daν+1

dλ
+ λaν+1,

= β(λ, ε)
d(λaν)

dλ
+ λ2 daν+1

dλ
− β(λ, ε)

d(λaν)
dλ

,

= λ2 daν+1

dλ
.

So we see in general that

∴ β(λ)
d(λaν)

dλ
= λ2 daν+1

dλ
.

‘óπερ ’έδει δε�ιξαι
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In the minimal subtraction scheme, we define the mass renormalization by m2
0 = m2Zm where

Zm = 1 +
∑
ν=1

bν

εν
.

Similarly, we will define the associated β-function βm(λ) = mγm(λ) which is given by

βm(λ) = M
dm

dM

∣∣∣∣
m0,ε

.

d.i) Let us show that γm(λ) = λ
2

db1
dλ .

proof: Because m2
0 is a constant, we know that dm2

0
dM = 0. Therefore, writing m2

0 = m2Zm

we see that this implies

dm2
0

dM
= 0 = 2Zmm

dm

dM
+ m2 dZm

dM
,

= 2Zmm
βm(λ)

M
+ m2 dZm

dλ

dλ

dM
= 0;

∴ 0 = 2Zmβm(λ) + mM
dλ

dM

dZm

dλ
;

∴ 2βm(λ)Zm = −mβ(λ, ε)
dZm

dλ
,

2βm(λ)
(

1 +
b1

ε
+ · · ·

)
= −mβ(λ, ε)

(
1
ε

db1

dλ
+ · · ·

)
,

2βm(λ)
(

1 +
b1

ε
+ · · ·

)
= −m (β(λ)− ελ)

(
1
ε

db1

dλ
+ · · ·

)
,

We see that the coefficient of the ε0 term on the left hand side is 2βm(λ) and on the
right hand side it is mλdb1

dλ . Therefore, because these terms must be equal, we see
that

βm(λ) = m
λ

2
db1

dλ
,

∴ γm(λ) =
λ

2
db1

dλ
.

‘óπερ ’έδει δε�ιξαι

d.ii) Let us prove that λdbν+1
dλ = 2γm(λ)bν + β(λ)dbν

dλ .

proof: Continuing our work from part (d.i) above, we have that

2βm(λ)
(

1 +
b1

ε
+ · · ·

)
= −m (β(λ)− ελ)

(
1
ε

db1

dλ
+ · · ·

)
.

It must be that the coefficients of 1
εν are equal on both sides. Therefore, we see that

2βm(λ)bν = −mβ(λ)
dbν

dλ
+ mλ

dbν+1

dλ
,

2mγm(λ)bν = −mβ(λ)
dbν

dλ
+ mλ

dbν+1

dλ
,

∴ 2γm(λ)bν = −β(λ)
dbν

dλ
+ λ

dbν+1

dλ
.

Rearranging terms, we see that

∴ λ
dbν+1

dλ
= 2γm(λ)bν + β(λ)

dbν

dλ
.

‘óπερ ’έδει δε�ιξαι
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Appendix

Calculation of the Running Couplings g and λ

Let us now solve for the flow of the coupling constants g, λ. We have in general that solutions
to the Callan-Symanzik equation will satisfy

dg

d log p/M
= βg =

5g3

16π2
+O(g5).

This is an ordinary differential equation. We see that

−1
2

1
g2 =

5
16π2

log p/M + C,

and so

∴ g2(p) = − 8π2

5 log p/M + C
.

The constant C is found so that g(p = M) = 1.3 This yields C = −1/2.
To find the flow of λ, however, it will be convenient to introduce a new variable η ≡ λ/g2. We must

then solve the equation

dη

d log p/M
=

βλ

g2
− 2

λβg

g3
=

(
3η2 − 2η − 48

)
g2

16π2
+O(g4).

This is again a simple ordinary differential equation. We see that this implies∫
dη

3η2 − 2η − 48
=

∫
g2

16π2
d log p/M.

Note that from our work above, g2

16π2 d log p/M = g2

16π2 d
(
− 8π2

5g2

)
= 1

5g dg. Therefore,
∫

dη

3η2 − 2η − 48
=

∫
1
5g

dg.

And so,

log

(
3η −√145− 1
3η +

√
145− 1

)
=

2
√

145
5

log g + C.

Solving this equation in terms of η, we see that we have

η =
Cg2

√
145/5

(√
145− 1

)
+
√

145 + 1

3− 3Cg2
√

145/5
,

=
1− Cg2

√
145/5

3− 3Cg2
√

145/5
+

Cg2
√

145/5
√

145 +
√

145
3− 3Cg2

√
145/5

,

=
1
3

(
1 +

√
145

C + g2
√

145/5

C − g2
√

145/5

)
.

∴ λ =
g2

3

(
1 +

√
145

C + g2
√

145/5

C − g2
√

145/5

)
.

As before, the constant term C is found by requiring that λ(p = M) = 1. The constant is then
C = − 4

√
145+149
141 .

3It can be argued that this is a poor choice of C because it requires the reference scale to be non-perturbative.
Nevertheless, it is not a free parameter.
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Asymptotic Symmetry
Let us consider the theory generated by the Lagrangian,

L =
1
2

(
(∂µφ1)2 + (∂µφ2)2

)− λ

4!
(
φ4

1 + φ4
2

)− 2ρ

4!
(
φ2

1φ
2
2

)
.

From this Lagrangian we may compute the Feynman rules. We notice that while the φ4
i interaction

has a symmetry of 4! to cancel the denominator, there is only a symmetry of 4 associated with the φ2
1φ

2
2

vertex and therefore the vertex factor is −i4 · 2ρ
4! = −iρ

3 .
After we have renormalized with canonical renormalization conditions, the Feynman rules are: 1

�= −iλ � = i/(p2 + iε)�= −iλ � = i/(p2 + iε)�= −iρ/3

�× = −iδλ �× = ip2δφ1 �× = −iδλ �× = ip2δφ2 �× = −iδρ/3

Let us now compute the β-functions for the couplings λ and ρ. To do this, we require the renormal-
ization counter-terms δλ and δρ.

To the one-loop order, we can find δλ by computing,

�=�+�+�+�+�+�+�+�×
= −iλ + (−iλ)2 [V (t) + V (s) + V (u)] + (−i

ρ

3
)3 [V (t) + V (s) + V (u)]− iδλ,

= −iλ−
(

λ2 +
ρ2

9

)
[V (t) + V (s) + V (u)]− iδλ.

Now, we notice that the integral V (k) is identical in all diagrams. In fact, every one-loop diagram
we will concern ourselves with give the same loop integral V (k). Let us compute the divergent piece of
V (k). Noticing the symmetry factor of 1

2 and recalling our early results of dimensional regularization,

V (k) =
1
2

∫
ddk

(4π)d

i

(k2 + iε)
i

((p− k)2 + iε)
,

= −1
2

∫ 1

0

dx

∫
dd`

(4π)d

1
(`2 −∆)2

,

= −1
2

∫ 1

0

dx
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
,

∼
d→4

− i

32π2

2
ε
→ − i

32π2
log

Λ2

M2
.

Therefore, applying the canonical renormalization conditions, we see that

δλ =
3

32π2

[
λ2 + (ρ/3)2

]
log

Λ2

M2
.

Because there are no divergent self-energy diagrams in this theory to one-loop order2, we have that
the β-function for λ is given precisely by twice the coefficient of the log divergence in δλ.

∴ βλ =
3

16π2

[
λ2 + (ρ/3)2

]
. (1.b.1)

1Notice that we have usedfaf to represent the field φ1 and we have usedhah to represent the field φ2.
2It is clear that the φ4 interaction does not itself offer any self-energy divergences to one-loop order. Furthermore, we

see that the φ2
1φ2

2 interaction’s contribution to self-energy also involves a loop independent of external momentum and

therefore will not diverge.

1
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Similar to our computation above, to find βρ we must compute the renormalization counter-term δρ.
To the one-loop order, we can find δρ by computing,

�=�+�+�+�+�+�×
We notice that the symmetry factor of 2, included in our evaluation of the function V (k), should

not be included for the penultimate and antepenultimate diagrams because distinct fields run in the
loop. Therefore, the loop integral for each of those two diagrams will contribute 2V (k) to to the total
amplitude. Noting this subtlety, we find that

iM = −i(ρ/3) + (−iλ)(−iρ/3) [V (t) + V (t)] + (−iρ/3)2 [2V (u) + 2V (s)]− iδρ/3.

Recall that we have already computed the divergence of the function V (k) and noted that it was
independent of k. Therefore,

iδρ/3 = (−iλ)(−iρ/3) [V (t) + V (t)] + (−iρ/3)2 [2V (u) + 2V (s)] ,

= −λρ/3
−i

16π2
log

Λ2

M2
− (ρ/3)2

−i

8π2
log

Λ2

M2
,

∴ δρ =
1

16π2

[
λρ + 2ρ2/3

]
log

Λ2

M2
.

Because there are no divergent self-energy diagrams in this theory to one-loop order, we have that
the β-function for ρ is given precisely by twice the coefficient of the log divergence in δρ.

∴ βρ =
1

8π2

[
λρ + 2ρ2/3

]
. (1.b.2)

Let us now consider the β-function associated with the ration λ/ρ. Using the chain rule for differen-
tiation and the definition of the general β-function, we see that

βλ/ρ =
1
ρ2

[βλρ− βρλ] =
1
ρ2

[
3λ2ρ

16π2
+

ρ3

48π2
− λ2ρ

8π2
− ρ2λ

12π2

]
,

=
(λ/ρ)2ρ
16π2

+
ρ

48π2
− (λ/ρ)

12π2
,

=
ρ

48π2

[
3(λ/ρ)2 − 4(λ/ρ) + 1

]
,

∴ βλ/ρ =
ρ

48π2
(3λ/ρ− 1) (λ/ρ− 1) . (1.c.1)

We see immediately that the two roots of βλ/r occur when λ/ρ = 1, 1
3 and because the second

derivative of βλ/r is 6 > 0, we know that βλ/ρ < 0 for λ/ρ ∈ ( 1
3 , 1) and βλ/r > 0 for λ/ρ > 1. Therefore,

for all λ/ρ > 1
3 , λ/ρ will flow to λ/ρ = 1. See Figure 1 below.

Therefore at large distances the couplings will flow to λ = ρ. This introduces a continuous O(2)

symmetry into the theory. To see this, let us define ϕ ≡
(

φ1

φ2

)
. In this notation, the Lagrangian

simply reads

L =
1
2
(∂µϕ)2 − λ

4!
ϕ4. (1.e.1)

This Lagrangian is clearly invariant to O(2) transformations which correspond to changing the phase
of ϕ.

0.5 1 1.5 2

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Figure 1. Renormalization Group Flow as a function of scale. Arrows show p → 0 flow.
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Asymptotic Freedom
Let us consider a theory with a coupling constant g such that

β(g) = −β1g
3

16π2
and γ(g) =

γ1g
3

16π2
,

for some positive constants β1, γ1.
The renormalized correlation functions satisfy the Callan-Symanzik equations which, for the ampu-

tated correlators, take the form[
M

d

dM
+ β(g)

∂

∂g
− nγ(g)

]
Γ(n)

R (pi/m, g) = 0.

If we take all the momenta to be equal for simplicity, then the solutions to the Callan-Symanzik equations
take the form

Γ(n)
R (p/M, g) = Γ(n)(g(p/M)) exp

(
−4

∫ p

M

d log(p′/M)γ(g(p′; g))
)

.

Let us compute the running coupling g(p/M). By the Callan-Symanzik equations, we see that

dg

d log(p/M)
= −β1g

3

16π2
=⇒

∫ g

g

dg

g3 = − β1

16π2

∫
d log(p/M),

=⇒ −1
2

(
1
g2 −

1
g2

)
= − β1

16π2
log(p/M),

∴ g2 =
g2

1 + g2 β1
8π2 log(p/M)

. (2.b.1)

Therefore, we see immediately that when p/M → ∞, 1 becomes insignificant in the denominator of
g2 and so g becomes independent of g. We see that

∴ g2 ≈
p→∞

8π2

β1 log(p/M)
. (2.b.2)

Furthermore, we notice that this approximation can be trusted because nonperturbative effects become
weaker at higher energy scales in an asymptotically free theory.

Let us now compute the dependence of the four-point vertex on momentum as p/M →∞. We assume
that, to the lowest order, Γ(4)

R = g2. We cited the general solution to the (amputated) Callan-Symanzik
equation above. Let us attempt to compute the integral in the exponent which multiplies Γ(4)(g). Using
g from our work above, we see that∫ p

M

d log(p′/M)γ(g(p′; g)) =
∫ p

M

d log(p′/M)
γ1

16π2

g3

(1 + g2 β1
8π2 log(p′/M))3/2

,

=
8π2

β1g2

γ1

16π2

−2g3

(1 + g2 β1
8π2 log(p′/M))1/2

∣∣∣∣∣

p

M

,

= −γ1g

β1

[
1

(1 + g2 β1
8π2 log(p/M))1/2

− 1

]
,

≈
p→∞

γ1g

β1
.

Unfortunately, this result cannot be trusted in general. This is because a very large portion of this
integral came from the lower bound p′ = M as p → ∞. The energy scale M is usually chosen to
represent the beginning of the non-perturbative regime in an asymptotically free field theory so our
one-loop estimate of the functions β(g), γ(g) cannot be trusted near p = M .

However, the calculation has taught us an important lesson. Although the precise value of the
integral is largely uncalculable, the form of the solution is predicted. In particular, our evaluation of
the integral showed us that whatever the result will be, it will be a constant, independent of p at large
momenta. Therefore, using our work from above, the general four-point function will be of the form
Γ(4)econstant ∝ g2. Because we know the behavior of g2 as p/M →∞, we conclude that

∴ Γ(4) ∼
p→∞

8π2

β1 log(p/M)
. (2.c.1)
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1. Loop Integrals in Dimensional Regularization
We are to verify the identity ∫

ddq

(2π)d

(d− 2n)q2 − dm2

(q2 −m2)n+1
= 0.

Noting the results of homework 6 and the elementary properties of the Γ-function, we may proceed
directly.
∫

ddq

(2π)d

(d− 2n)q2 − dm2

(q2 −m2)n+1
= (d− 2n)

(−1)ni

(4π)d/2

d

2
Γ

(
n− d

2

)

Γ(n + 1)
1

(m2)n−d/2
− dm2 (−1)n+1i

(4π)d/2

(
n + 1− d

2

)

Γ(n + 1)
1

(m2)n+1−d/2
,

=
(−1)ni

(4π)d/2

d

Γ(n + 1)

[
(d/2− n)

Γ
(
n− d

2

)

(m2)n−d/2
+ m2 Γ

(
n + 1− d

2

)

(m2)n+1−d/2

]
,

=
(−1)ni

(4π)d/2

d

Γ(n + 1)
1

(m2)n−d/2
[−(n− d/2)Γ(n− d/2) + Γ(n + 1− d/2)] ,

=
(−1)ni

(4π)d/2

d

Γ(n + 1)
1

(m2)n−d/2
[−Γ(n + 1− d/2) + Γ(n + 1− d/2)] ,

= 0.

∴
∫

ddq

(2π)d

(d− 2n)q2 − dm2

(q2 −m2)n+1
= 0. (1.a)

‘óπερ ’έδει δε�ιξαι

Let us now evaluate the following loop integral,

I(p2,m2
1,m

2
2) = −ie2

∫
ddq

(2π)d

1
((q + p/2)2 −m2

1 + iε)((q − p/2)2 −m2
2 + iε)

.

To evaluate this integral lucidly, let us first introduce the change of variables k ≡ q+p/2. Introducing
the Feynman parameter x, the integral becomes,

∫ 1

0

dx

∫
ddk

(2π)d

1
[x((k − p)2 −m2

2 + iε) + (1− x)(k2 −m2
1 + iε)]2

.

Introducing the variables,

` ≡ k − xp and ∆ ≡ x(x− 1)p2 + xm2
2 + (1− x)m2

1,

we see that

I(p2, m2
1, m

2
2) =

∫ 1

0

dx

∫
dd`

(2π)d

1
[`2 −∆ + iε]2

,

=
∫ 1

0

dx

[
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2

]
,

∼
d→4

i

(4π)2

∫ 1

0

dx

[
2
ε
− log ∆− γE + log(4π) +O(ε)

]

∴ I(p2,m2
1,m

2
2) ∼

d→4

i

(4π)2

∫ 1

0

dx

[
2
ε

+ log
1

x(x− 1)p2 + xm2
2 + (1− x)m2

1

− γE + log(4π)
]
. (1.b)

‘óπερ ’έδει δε�ιξαι
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The One-Loop Structure of Quantum Electrodynamics
While studying the superficial divergences of quantum electrodynamics, we noted that gauge invariance–

and hence the Ward identity–made several superficially divergent diagrams either converge or vanish.
We are to verify these claims explicitly.

Superficially, the one-point function of the photon has a cubic divergence. Let us demonstrate that
in fact, to the one-loop order, the one-point function of the photon vanishes.

To one-loop order, we see that� =�
k

−→qThe amplitude for the above diagram is given by

iM = (−1)ε∗µ(q)
∫

ddk

(2π)d
Tr

[
i(6k + me)

(k2 −m2
e + iε)

(−ieγµ)
]
,

= −ε∗µ(q)e
∫

ddk

(4π)d

Tr (6kγµ + mγµ)
(k2 −m2

e + iε)
,

= −ε∗µ(q)4e

∫
ddk

(4π)d

kµ

(k2 −m2
e + iε)

,

= 0.

Therefore, to one-loop order, � = 0. ‘óπερ ’έδει δε�ιξαι

Similarly, we argued that although the photon three-point function has a superficial, linear divergence,
its amplitude should also vanish. Let us now demonstrate this fact.

To one-loop order, we see that

�=�k3

k2

k1

ρ
ν

µ

+�
−k2

−k1 −k3

ρ
ν

µ

Note that the second diagram has been labeled the same as the first diagram but with relative minus
signs on the momenta k. This is because the Feynman propagator has the property thatfa−→kf =

i(6k + me)
(k2 −m2

e + iε)
whereas fa←−kf =

i(−6k + me)
(k2 −m2

e + iε)
.

Let us consider the evaluation of the first diagram. Its amplitude is proportional to integration over

Tr [γµ(6k1 + me)γν(6k2 + me)γρ(6k3 + me)] .

Because only those traces over an even number of γ -matrices are non-vanishing, this is equal to

Tr [γµ 6k1γ
ν 6k2γ

ρ 6k3] + m2
e (Tr [γµ 6k1γ

νγρ] + Tr [γµγν 6k2γ
ρ] Tr [γµγνγρ 6k3]) .

Notice that the only remaining traces involve an odd number of momenta k.
Similarly, we see that the amplitude of the second diagram is proportional to integration over

Tr [(−6k3 + me)γρ(−6k2 + me)γν(−6k1 + me)γµ] = −Tr [6k3γ
ρ 6k2γ

ν 6k1γ
µ]−m2

e (Tr [6k3γ
ργνγµ] + Tr [γρ 6k2γ

νγµ] Tr [γργν 6k1γ
µ]) .

But, noting identity (5.7) of Peskin and Schroeder, the traces of each expression are equal. Therefore,
the negative contribution from the second diagram cancels the contribution from the first.

�
−k2

−k1 −k3

ρ
ν

µ

= −�k3

k2

k1

ρ
ν

µ

.

Therefore, to one-loop order, �= 0.
‘óπερ ’έδει δε�ιξαι
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Lastly, our analysis showed that the photon four-point function has a logarithmic, superficial diver-
gence, but by gauge invariance this amplitude is convergent. We are to demonstrate that the photon
four-point function does not diverge to the one-loop order in perturbation theory.

To one-loop order, we see that

I II III IV V VI

�=�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

+�σ

ρ
ν

µ

(µ ν ρ σ) (σ ρ ν µ) (µ σ ν ρ) (ρ ν σ µ) (µ ν σ ρ) (ρ σ ν µ)
Because it is our task to demonstrate that the above amplitude converges–rather than actually com-

pute the amplitude–we may make several helpful simplifications. To illustrate the first major simplifi-
cation, let us analyze the first diagram, (I).

�
p3 p4

p1 p2
k − p1

k − p3 − p4

k − p3

k
σ

ρν

µ

= −e4

∫
ddk

(2π)d

Tr [(6k−6p1 + me)γµ(6k + me)γν(6k−6p3 + me)γρ(6k−6p3−6p4 + me)γσ]
((k − p1)2 −m2

e)(k2 −m2
e)((k − p3)2 −m2

e)((k − p3 − p4)2 −m2
e)

,

= −e4

∫
ddk

(2π)d

Tr [6kγµ 6kγν 6kγρ 6kγσ]
(k2 −m2

e)4
+ finite terms.

Therefore, we see that the divergent part of each diagram is a function of only the order of γ-matrices
in the trace.

Now, we claim that the divergence of diagram (I) is the same as (II), (III)∼(IV), and (V)∼(VI). First,
note that the relative change of sign for the loop momentum k between each pair will not change the
divergence of the diagram because each involves only k4 = (−k)4. Secondly, the ordering of the vertices
are precisely reversed for each pair and so by identity (5.7) of Peskin and Schroeder they are equal.
Therefore the total divergence of these six diagrams will be twice that of (I), (III), and (V) alone.

Let us continue to compute the divergence of diagram (I) before illustrating the sum of all six di-
agrams. Because, as we will show, the sum of the diagrams will converge, we will continue without
dimensional regularization.1

In our calculation below, we will repeatedly make use of γ-matrix algebra proved in homework (in-
cluding that of semester I). Also, note our use of identity (A.42) from Peskin and Schroeder. Let us
begin to evaluate the divergence of diagram (I). The integrand is proportional to

Tr [6kγµ 6kγν 6kγρ 6kγσ] = kαkβkγkδTr
[
γαγµγβγνγγγργδγσ

]
,

→ 1
d(d + 2)

(k2)2 (gαβgγδ + gαγgβδ + gαδgβγ)Tr
[
γαγµγβγνγγγργδγσ

]
,

∝ Tr[γγµγ γν γγργ γσ] + Tr[γγµγγνγγργ γσ] + Tr[γγµγγνγγργ γσ],

= Tr[(−2γµ)γν(−2γρ)γσ] + Tr[(−2)γνγγµγργ γσ] + Tr[γγµ(−2γν)γργ γσ],

= 4Tr[γµγνγργσ]− 2Tr[γν4gµργσ]− 2Tr[−2γργνγµγσ],

= 8Tr[γµγνγργσ]− 8gµρTr[γνγσ],

= 32 (gρσgµν − gνσgµρ + gµσgνρ)− 32gµρgνσ,

∝ (gµνgρσ − 2gµρgνσ + gµσgνρ) .

Therefore, when we evaluate the amplitude for all six diagrams, the divergent integral will be over
a term proportional to (gµνgρσ − 2gµρgνσ + gµσgνρ) together with the analogous terms under the other
two distinct permutations. Therefore, the amplitude’s divergence will be proportional to,

(gµνgρσ − 2gµρgνσ + gµσgνρ) + (gµρgνσ − 2gµνgρσ + gµσgρν) + (gµνgρσ − 2gµσgνρ + gµρgνσ) = 0.

Therefore, the photon’s four-point function is convergent to loop-order in QED. ‘óπερ ’έδει δε�ιξαι

1It is easier for our purposes to work with d = 4 trace-algebra. Because the total divergence will vanish in d = 4, it
must also vanish in general dimensional regularization.
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The β-function of Quantum Chromodynamics
We are given that, at one-loop order in perturbation theory, the divergent parts of the counter terms

of quantum chromodynamics are

δ1 = −7
2

g2

(4π)2
log

Λ2

M2
, δ2 = −1

2
g2

(4π)2
log

Λ2

M2
, and δ3 =

(
5− 2

3
nf

)
g2

(4π)2
log

Λ2

M2
,

where the δi are defined in analogy to quantum electrodynamics. We see that these directly imply that

Bg =
7
2

g2

(4π)2
, Af = −1

2
g2

(4π)2
, and Agl =

(
5− 2

3
nf

)
g2

(4π)2
,

where Af corresponds to fermion self-energy and Agl corresponds to gluon self-energy.
Let us now compute the β-function for the strong coupling g. This corresponds to the diagram,

�
δ2

δ1

δ2

δ3

Therefore, because βg = −2gBg − 2gAF − gAgl, we see that

∴ βg = −
(

11− 2
3
nf

)
g3

16π2
. (3.a)

In homework 10, we computed the general running coupling constat associated with quantum chro-
modynamics. To relate that result with our work here, we should set the undetermined constant β1 to(
11− 2

3nf

)
. So from our results of homework 10, we see that the square of the running coupling g is

∴ g2 =
g2

1 + g2

8π2

(
11− 2

3nf

)
log(p/M)

. (3.b)

We see that the coupling constant will be asymptotically free if 11 > 2/3nf . This is because asymptotic
freedom is directly a result of a negative β-function. It is clear that βg < 0 only if nf < 33/2 = 16.5.
Also, again by the results of homework 10, we see that at large energy (p/M → ∞), the square of the
coupling constant can be approximated by

g2 ≈
p
M→∞

8π2

(
11− 2

3nf

)
log(p/M)

. (3.c)




